
Everyone Likes Some Assembling (ELSA)
the native 65C816 assembler

An overview

(c) 2020-2025 KMK/DLT

Version 1.02

Preface

ELSA is a clone of the MAE assembler by John Harris. This was the
assembler I had used since around 1996, when I discovered it and
switched to it from MAC/65.

I sometimes still use MAE, but as years were passing, MAE was be-
coming a bit too limited to my needs. Since that assembler is apparently
no longer developed, and since its author, John Harris, has refused to
publish its source code, I was forced to start writing my own assembler.
It of course has the flavour of MAE, the assembler I was accustomed to.
But I have not used any part of MAE's code: the code is entirely my own,
the ELSA assembler only mimics most of the MAE's syntax, diverging
whenever I thought I had a better idea.

Also, ELSA is only an assembler compiler. Unlike MAE, it does not
contain an editor or a disassembler/debugger. For that last, I am cur-
rently working on my own disassembler for 65C816, and for the editor I
still use MAE.

ELSA is entirely written in 65C816 native code and makes use of
the RAM past the first 64k: it stores the symbol table there, thus making
it virtually unlimited. In the base 64k the program occupies around 34k.

One important similarity between ELSA and MAE is that ELSA, like
MAE, was written entirely on Atari. First versions were written and
compiled under MAE, later versions compiled with themselves, still
however being written in MAE's excellent editor.

For years it had been my private program, not really intended for
public release. But it apparently has grown so that it can be shown to
other people. So it will be with the hope that it turns out to be useful to
someone.

Warszawa, 04/06/2025

1

Table of contents
Preface.. 1
I. Operation... 4
II. Command line arguments...5
III. General assembler syntax..7
IV. Labels.. 8

1. Label name.. 8
2. General syntax... 8
3. Local labels, MAE-style...8
4. Local namespaces...9
5. Definition order... 9

V. Expressions... 10
1. Value types...10

VI. Constants... 11
VII. Unary operators... 12
VIII. Binary operators..14
IX. Directives... 16

1. Target CPU control..16
2. Conditionals and general assembly control...18
3. Repetitions... 20
4. Fixed data definition control...21
5. Code generation control..22
6. Memory allocation control...24
7. Label control..25
8. Input/output control..26
9. Listing control...27
10. SpartaDOS X support...28

10.1 Example code: 6502 emulation mode...30
10.2 Example code: 65C816 native mode..30

X. Pseudo-labels... 32
XI. Pseudo-instructions...34
XII. Instruction aliases...44
XIII. Alternative syntax for some instructions...45
XIV. Divergences from the WDC-recommended syntax................................47
XV. Declaring zero-page locations...48
XVI. Sections DATA and BSS..50

2

1. BSS section... 50
1.1. BSS PC.. 52
1.2. BSS section in REL blocks...52

2. DATA section.. 53
2.1. DATA section in REL blocks...53

3. Combining DATA and BSS sections...53
4. DATA/BSS quirks...54

XVII. Defining structures..55
1. Defining a structure in memory...55
2. Defining a structure on the stack...57

XVIII. XREFs and XDEFs..60
1. XREFs.. 60
2. XDEFs.. 61

XIX. Starting relocatable programs..62
XX. Error messages... 63
XXI. Warning messages...67
Appendix A: SpartaDOS X system loader relocation rules..........................69
Appendix B: MAE's directives not supported in ELSA..................................71
Appendix C: MAE's bugs...72
Appendix D: ELSA's source statistics...73

3

I. Operation

As said in the Preface, ELSA is MAE's clone, so first of all it is good
to get some acquaintance with that assembler. The MAE User's Manual
you can find on the Net will supply you with the basic information on
this topic:

http://www.mixinc.net/atari/mae.htm
Unlike MAE (which stands for Macro-Assembler-Editor), ELSA is

an assembler compiler only, contains no editor nor debugger.
Also, unlike MAE, ELSA aborts the assembling on first error, emits a

bell signal (ASCII 253), and quits to DOS. This allows you to leave the
computer alone doing a larger assembly builds instead of being forced
to watch the screen constantly for error messages or miss them having
been scrolled up out of the display.

Unlike MAE, which compiles from the memory to the memory or
from memory to an object file, ELSA compiles from the source file to the
object file only. Therefore it is good to have a fast hard drive as storage.

Other requirements are:

1) 65C816 CPU operating at least at 1.77 MHz;
2) 65C816 compatible OS ROM, like DracOS (also known as Rapidus OS);
3) a DOS with OSS CLI, preferably SpartaDOS.

Altirra users, please use a version of the emulator not older than 4.20-test6.

Recommended:

4) SpartaDOS X;
5) at least 64k of the 65C816 High RAM, also known as the linear memory

(the flat RAM past the address $00FFFF);
6) a 20 MHz CPU.

Limitations:

a) Maximum source line length: 255 characters
b) Maximum length of a label: 240 characters
c) Maximum line count per file: 16777216 (8-9 hours of assembling)
d) Maximum global line count: 4294967296 (3 months of assembling)

4

http://www.mixinc.net/atari/mae.htm

II. Command line arguments

The syntax is:

ELSA [options] source_file_name.ext [options]

The options are:

Switch Function

/A Disable caching source code in the memory. In that case the
source will be read from the disk in both passes. Useful for
large assemblies when there is not enough free RAM in your
computer.

/C Case-insensitive labels: with this option the labels "ADR" and
"adr" are identical.

/Dlabel=value Assign "value" to the label named "label" and insert this label
into the symbol table before the first assembly pass.
Example: /DSTART=$2000

/L[fname.ext] Generate assembly listing during the second pass. The listing
will be printed to the specified file, or, if no file was specified,
it will appear on the screen. In both cases it will be formatted
for 80-column displays. This switch has a priority over .LS and
.LC directives possibly inserted into the source code (i.e. .LC
will not be able to switch off the listing if it was enabled
with /L).

/Mtarget Define default target CPU. The available targets are: 6502,
65c02, 65sc02, 65c802 and 65c816. When no target is spe-
cified, 65C816 is assumed. How the targets are defined and
what are the effects of selecting a particular target CPU, it is
explained when the corresponding assembly directives are
discussed. Example: /M65C802.

/Ofname.ext Define the object file name. This switch has a priority over
.OUT directives placed within the source code: then /O is spe-
cified, any .OUT will be ignored and a warning message will be
printed on the screen. When the object file name is defined
neither in the command line nor in the source code, the object
code will not be saved anywhere. Remark: note that it is not
very safe to manually type both the source file name and the ob-

5

ject file name each time a program needs to be assembled; bet-
ter define the object file in your source using the .OUT directive,
leaving the /O command line switch for the use inside BAT
scripts and the like.

/Q Quiet assembly, i.e. suppress warnings.

/P Warn about branches crossing a page boundary.

/U Report all unreferenced internal addresses after the second
pass.

/V Report all unused labels after the second pass. This is repor-
ted by default in the final message as "n LABELS DEFINED (m
NEVER USED)", adding the switch just causes the unrefer-
enced labels to be explicitly listed. Unlike /U, this lists all un-
used labels regardless of their function, i.e. whether they are
meaning addresses or values or whatever.

Instead of the "/" sign, the minus sign may be used, e.g. -M65C802
is perfectly valid.

6

III. General assembler syntax

As said above, ELSA is a clone of MAE. In the area of the syntax,
MAE is in turn generally following the style of MAC/65, so that switch-
ing from the latter to the former makes no trouble. The MAE's oddity is
that it only respects the first three characters of the name of a directive,
so for example writing in the source .WORD or .WO makes no differ-
ence. ELSA keeps many of these quirks for (my) convenience, but the
short forms are in fact explicit aliases for their longer equivalents.

7

IV. Labels

1. Label name

A label may be up to 240 characters long, which means that there is
no practical size limit. The label's first character must be a letter, apart
from that the decimal digits, the @ character, the dot (".") and the un-
derscore character ("_") are allowed in the body of a label. The question
mark, for the reason explained below, is only allowed as either the first
or as the last character of a label (therefore such an expression as
BOOT? = $09 is perfectly valid).

All label names beginning with double underscore character ("__")
are reserved and should not be used in programs because of possible
conflicts with pseudo-labels (explained somewhat below) and labels
declared implicitly by the assembler for internal purposes.

Label names are case-sensitive by default ("FOO" is different than
"foo" etc.), if you want case insensitive searches, please specify /C in the
command line.

2. General syntax

A label to be defined must start in the 0 (i.e. the leftmost) column
of the text. Its name may be terminated with a colon (":"), this character,
when found at the end of a label during its definition, is skipped.

The percent-sign ("%") appended at the end of a label being de-
clared is a special declarator: that label will be exported as an externally
accessible symbol (XDEF). Otherwise the use of that sign in labels is not
allowed.

3. Local labels, MAE-style

In the area of labels, the most notable feature of ELSA's prede-
cessor, MAE, is the system of local labels marked with "?" character at
the beginning. Such a label will serve as a local one in the area between
two consecutive global labels. To reference such a local label, just prefix
its name with the "?" character (e.g. LDA ?SIZE). When a reference to a
local label is required from the outside of its global scope, the respective
global label should be used followed by "?" and by the local label the ref-
erence is being made to (e.g. LDA IOCB?ICAX1,X). ELSA follows this sys-

8

tem as a simple and elegant solution of the problem of label locality.
Any other label is a global label (unless stated otherwise).

4. Local namespaces

The directive .LOCAL namespace defines higher level of locality, not
to be confused with the aforementioned system modelled after MAE
(this may be used without using the .LOCAL keyword). All labels, no
matter if "global" or "MAE-style local", when defined between two .LOC-
AL directives, belong to the local namespace defined by the first of them
only. This allows strict separation of local namespaces from the main
program and from each other, so that even the same include files, defin-
ing the same global labels, may be used multiple times in different parts
of the program.

An obvious example is an init segment, which gets overwritten
after use: within it you may use the same library procedures and system
calls as within the rest of the program, but you do not want, from within
the main program, to accidentally reference something, that was only
temporarily defined for the init segment.

When a reference between different namespaces is required, the
label referenced should be preceded with the name of its namespace
and a colon (":", e.g. JMP INIT0:START). The global namespace has no
name, so when a reference to a global label is required from within a
local namespace, the label being referenced should be preceded with a
colon only (e.g. LDA :KBCODES).

References to a MAE-style local label defined within a local
namespace from the outside of that namespace are not allowed.

5. Definition order

ELSA is a two-pass assembler, so it is best to define a label before
its first use whenever possible: this is especially important in more
complex arithmetic expressions, where all components must be defined
during second assembly pass, or an error will occur. Labels for ad-
dresses may be defined after the reference, but when the address is on
zero page, using it before definition will cause phasing error to occur
during second pass. To avoid that, while referencing such a label, use
the unary operator < (e.g. LDA <LABEL) to tell the assembler that the la-
bel to be defined will reference a zero-page location and an 8-bit ad-
dress may be used.

9

V. Expressions

Like MAE, ELSA does not pay attention to arithmetic operator pre-
cedence, the expressions are evaluated straight from left to right, and
there are no parentheses. Some day I will have to fix this, probably. The
results coming from the integer evaluator are 32-bit unsigned integers.
Whenever the result does not fit in 32 bits, it gets cut down to this size
and a warning is generated.

The equal sign ("=") placed after a label means that the value of the
following expression will be assigned to the label. Otherwise, when no
equal sign follows, the label will be assigned the current value of the PC.

The asterisk ("*"), as in most other assemblers, means the current
value of the PC. But, unlike in MAC/65, it is a read-only symbol and you
cannot assign it a new value; so the expression "*=*+value", commonly
used in MAC/65 to reserve memory space of the "value" length, will not
work – you have to use the .DS directive instead.

1. Value types

ELSA generally knows two types of values: addresses and values.
The difference between them is mostly of internal significance only, and
the conversions most of the time occur automatically. However, if an
arithmetic operation tries to combine values with addresses or ad-
dresses with addresses in a suspicious way, the result will be of the
value type and the assembler will generate a warning. The types can
also be enforced by the programmer, whenever the automatic conver-
sions do not yield satisfactory results: this may be done using the cast
operators (explained further on).

As of ELSA version 0.98, if the CPU selected is 65C816 (which is the
default), the results of address calculations will be cut down to 24 bits,
and to 16 bits otherwise.

10

VI. Constants

Prefix Function

(none) Decimal constant. Example: lda 32000

$ Hexadecimal constant: lda $7d00

% Binary constant: lda %0111110100000000

' Character constant: lda #'A

"..." Character string or floating point constant: .byte "HELLO!"

Note that an ASCII constant consisting of a single character is
marked by a single apostrophe situated in front of it. This also applies
to directives such as .BYTE, thus

 .byte 'H,'E,'L,'L,'O,'!

is a perfectly valid equivalent to the example shown in the table.

11

VII. Unary operators

Operators which can be applied to individual operands in expres-
sion:

Operator Function

+ Do nothing.

- Arithmetic negation: applies (XOR -1) + 1 (two's complement) to
what follows.

! Bitwise negation: applies XOR -1 (one's complement, „flip bits”) to
what follows.

Operators which are applied to the result of entire expression after
its evaluation:

Operator Function

< Extract the bits 0-7 of the given value: <$12345678 is $78.

> Extract the bits 8-15 of the given value: >$12345678 is $56.

^ Extract the bits 16-23 of the given value: ^$12345678 is $34.

\ Extract the bits 24-32 of the given value: \$12345678 is $12.

($) Cast the result to a value type. This also suppresses the warning
on „fishy maths”.

(&) Cast the result to an address type. The warning is likewise sup-
pressed.

The casts are executed as the very last operations on the calculation's res-
ult, even after <, >, ^ and \.

Addressing modes:

Operator Function

Force the immediate addressing mode (e.g. lda #value)

< Force the zero-page addressing mode (e.g. lda <value)

| Force the absolute (16-bit) addressing mode (e.g. lda |value)

12

! Same as the | (e.g. lda !value).

> Force the long absolute (24-bit) addressing mode (e.g. lda
>value).

These latter ones will be applied first to arguments to mnemonics,
then the assembler will proceed normally with the expression evalu-
ation. So STA !0 (address 0 with forced 16-bit addressing) will produce
$8D $00 $00, and STA !!0 will produce $8D $FF $FF (the first ! forces
16-bit addressing mode, the subsequent one negates the result of the
argument evaluation).

13

VIII. Binary operators

Basic 32-bit integer arithmetics is what you expect:

Operator Function

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo

The logical shifts (logical, because all the integers are unsigned)
may be used as faster replacements for multiplication and division,
where applicable:

Operator Function

<< Logical shift left. E.g. $00001234<<4 will produce $00012340

>> Logical shift right. E.g. $FEDCAB98>>4 will produce $0FEDCAB9

There are slight differences between MAE and ELSA in the syntax
of comparison operators:

MAE ELSA Function

= = Equal

<> Different

> > Greater

< < Lesser

(none) >= Greater or equal

(none) <= Lesser or equal

Attention should be paid to the fact that ELSA evaluates expres-

14

sions from left to right. So, to avoid confusing effects in conditionals, it
is best to do comparisons so that the right side of a comparator is a
single constant or label. For example:

 .if foo=bar+1

will always(!) be TRUE; to make it work correctly write:

 .if bar+1=foo

Also, comparing to MAE, there are novelties in the logical operat-
ors:

MAE ELSA Function

& & binary AND

| | binary OR

^ ^ binary XOR (EOR)

(none) && logical AND

(none) || logical OR

 If you supply addresses as both input numbers for most artithmet-
ical or logical operations, the program will perform the required maths,
but expect a warning in the process. Subtracting an address from anoth-
er address, however, as being perfectly legal, is performed without com-
plaints.

15

IX. Directives

The directives are keywords which are steering the process of as-
sembling. In ELSA, as in MAC/65 and MAE, most of these keywords are
preceded with a dot. It makes them more visible in the source code and
also facilitates its parsing.

The directives must be located past the column 0 of your source
file, i.e. there must be at least one space (or TAB) between them and the
left margin. Only one directive is allowed per program line, unless
stated otherwise.

Symbols used in the table below:
x - expression; w - expression, word value; b - expression, byte

value; lb - label name. All these "expressions" must evaluate in the first
assembly pass.

1. Target CPU control

Directive Synopsis Examples

.6502

.02
Set 6502 as the current target. Implies
.RB. The target CPU is defined as a sub-
set of 65C02, any instruction that does
not belong to that subset will generate a
warning.

 .6502

.65C02

.C02
Set 65C02 as the current target.
Implies .RB. The target CPU is defined as
a subset of 65SC02, any instruction that
does not belong to that subset will gen-
erate a warning.

 .65c02

.65C802

.802
Set 65C802 as the current target. The
target CPU is practically the 65C816, just
the instructions related to 24-bit ad-
dressing (operational, but pretty much
useless on 64k address space) will gen-
erate warnings.

 .65c802

.65C816

.816

.65816

Set the 65C816 as the current target.
This is the default, unless overridden in
the command line or in the source code.

 .65c816

16

.65SC02 Set 65SC02 (slightly modified 65C02
produced by Rockwell and WDC) as the
current target. Implies .RB. The target
CPU is defined as a subset of 65C802,
any instruction that does not belong to
that subset will generate a warning.
Rockwell's BBR/BBS instructions and
such (which are not continued in
65C802) are not supported.

 .65sc02

.AB Accumulator Byte: tell the assembler,
that the current accumulator size is
Byte. This directive has effect only if the
target CPU is 65C802 or 65C816. For
other targets the assembler will ignore
the directive and generate a warning.

 .ab

.AW Accumulator Word: tell the assembler,
that the current accumulator size is
Word. This directive has effect only if the
target CPU is 65C802 or 65C816. For
other targets the assembler will ignore
the directive and generate a warning.

 .aw

.CPU b If the current target is 65C802 or
65C816, tell the assembler if the current
CPU mode selected is the emulation
mode or the native mode. The paramet-
er’s value of 8 means the emulation
mode, and a value of 16 means the nat-
ive mode. Other values will cause the as-
sembler to throw an error. .CPU 8 also
implies .RB - and in this mode
directives .AW, .IW and .RW will generate
warnings and have no effect. .CPU 16 im-
plies .OPT P-. If the current target CPU is
not 65C802 or 65C816, .CPU 16 will gen-
erate a warning.

 .cpu 16

.IB Index registers Byte: tell the assembler,
that the current X and Y register size is
Byte. This directive has effect only if the
target CPU is 65C802 or 65C816. For
other targets the assembler will ignore
the directive and generate a warning.

 .ib

17

.IW Index registers Word: tell the assembler,
that the current X and Y register size is
Word. This directive has effect only if the
target CPU is 65C802 or 65C816. For
other targets the assembler will ignore
the directive and generate a warning.

 .iw

.RB Tell the assembler, that the current size
of registers AXY is Byte. This directive
has effect only if the target CPU is
65C802 or 65C816. For other targets the
assembler will ignore the directive and
generate a warning.

 .rb

.RW Tell the assembler, that the current size
of registers AXY is Word. This directive
has effect only if the target CPU is
65C802 or 65C816. For other targets the
assembler will ignore the directive and
generate a warning.

 .rw

2. Conditionals and general assembly control

Directive Synopsis Examples

.ALIGN w Align the current PC to the boundary
specified by the argument. The argu-
ment's value has to be a power of two
and be greater than a 0. A value of 1 is
allowed, too, but it obviously does noth-
ing. In .ZP, .BSS and .ORG blocks the PC is
adjusted by adding offset to its current
value. In .REL and .DATA blocks – by gen-
erating a suitable number of zeros. It is
to be kept in mind that .ALIGN operates
on PC value as it is during the assembly
time – in .REL blocks it has no influence
how the program will get aligned in the
destination memory.

 .align $0100

.ELSE

.EL
This inverts the result of the expression
evaluation made by the .IF directive.

(see .if)

18

.END Ends the assembling and closes the ob-
ject code file, if any was opened.

 .end

.ENDIF

This ends the conditional block started
with .IF

(see .if)

.ERROR Just like .PRINT, but after printing out
the required text it also aborts the as-
sembling with an error message. Obvi-
ously it makes sense within a condition-
al block only (.IF / .ENDIF).

 .error "lm=",lm

.IF x The beginning of the conditional block. If
"x" is evaluated as true, the lines imme-
diately following the .IF directive will be
interpreted, or ignored otherwise. The
conditional blocks can be nested up to
256 levels deep. When this limit is ex-
ceeded, the assembler will generate an
error message.

 .if __M6502__=1
 .print "nmos"
 .else
 .print "cmos"
 .endif
 .if ab&&bc
 ...

.IFDEF lb Returns TRUE if the label "lb" is defined,
i.e. already present in the symbol table.

 .ifdef use_cio
 .include cio.s
 .endif

.IFNDEF lb As above, just returns FALSE when the
label 'x' is defined.

 .ifndef sysequ
rtclock=18
 .endif

.OPT Specify additional assembly options:
* B- - disable warnings on BRK instruc-
tion.
* F- use this when including binary files
with .BIN from a file system which does
not provide reliable information on the
length of files (such as AtariDOS file sys-
tem). F+ is the default.
* H- suppress (or enable with H+) writ-
ing headers to the object code. H+ is the
default. This only applies to the .ABS and
.ORG headers, .REL headers are unaf-
fected.
* P+ - enable warnings on cross-page
branches. P- is the default, unless /P was
specified in the command line. If it was,
P+ or P- used in the code have no

 .opt h-,f-
 .opt h+,f+

19

effect. .CPU 16 implies .OPT P-.
* W- disable all warnings. W+ is the de-
fault, however the command line
switch /Q has a priority here and with it
the .OPT W+ will not enable warnings
anyway.

.PRINT

.PR
Prints the given text during the assem-
bling. ASCII strings must be included
within double quotation marks, multiple
arguments must be separated with com-
mas. When nothing is given, .PRINT will
just output an EOL character.

 .print "pc:",*

The general remark to the conditionals .IF, .IFDEF and .IFNDEF is
that you should watch out if the conditional expression keeps the same
logical value during both assembly passes. For instance, doing some-
thing like this:

 .ifndef foobar
foobar = 1
 .endif

is asking for trouble, because the label foobar, when undefined dur-
ing the first pass, will anyway be defined during the second pass. In this
case the ELSA’s symbol table will lose consistency and weird errors will
get reported.

3. Repetitions

Directive Synopsis Examples

.ENDR Marks the end of the block started with
.REPT.

(see .REPT)

.REPT w Marks the beginning of the block of lines
in your source file, which have to be re-
peated "w" times during assembling. The
end of that block should be marked with
.ENDR. Within the block, the pseudo-label
__REPT__ contains the number of the cur-
rent iteration, and the operator # when

 lda math
 .rept 8
 asl
 rol math+1
 bcs skip#
 inc nuls
skip#

20

appended to a label, makes it unique for
each iteration. When "w" is zero, the pair
REPT/ENDR will do nothing, and the as-
sembler will generate a warning. The
.REPT blocks cannot be nested.

 .endr

4. Fixed data definition control

Directive Synopsis Examples

.BYTE

.BY
Inject the given byte values to the output
file. The consecutive "bytes" separated
with commas can be: decimal numbers,
hexadecimal numbers preceded with the $
character, single ASCII characters pre-
ceded with the apostrophe, labels, arith-
metic expressions, or text strings included
in the double quotation marks. When the
first numeric value is preceded with the +
or - sign, this value will be added to or
subtracted from, respectively, the rest of
the values generated by this directive.

 .byte $ff,'a,'b,0
 .byte <val,>val
 .byte size*2+1
 .byte "Hey",$9b
 .byte +$80,"hello"
 .byte -$20,"caps"

.CBYTE

.CB
As .BYTE, except that the last byte gener-
ated by the single .CBYTE directive will be
"inverted" (i.e. EORed with $80).

 .cbyte "LOAD"
 .cbyte +$20,"CAPS"

.DBYTE As .WORD, but with the inverted order of
the bytes (i.e. MSB first).

 .dbyte $07ff,13

.DC w b Define Constant-filled block. The consec-
utive 16-bit "w" number of bytes will be
filled with the 8-bit value of "b". A value of
0 for "w" will generate a warning.

 .dc 345 $ff

.FLOAT

.FL
Store the arguments, separated by com-
mas, in the Floating Point 6-byte BCD
format for use with the OS ROM's Floating
Point package. This directive accepts two
types of arguments: FP constants, which
are just converted to the BCD, and integer
expressions, which are evaluated nor-
mally, then the result is converted to the
BCD format. An FP constant must be in-

 .float "3.14","0"
 .float 256*3,-2+1

21

cluded in double quotation marks; when
they are missing, this means that the argu-
ment is an integer expression to be evalu-
ated first. The results coming from the in-
teger evaluator are interpreted as signed
values (range -2147483648 < 0 <
2147483647), so e.g. .FLOAT -2+1 pro-
duces correct "-1" in BCD, and not what
the integer evaluator would bring about
normally, i.e. 4294967295.

.HEX

.HE
Generate a series of hexadecimal numbers.
It is similar to .BYTE, but in the particular
case of hex number may be more handy,
because does not stipulate them to be pre-
ceded with the $ sign and the separator is
space.

 .hex ae 19 00 44

.LONG

.LO
Stores long, 24-bit words in the object
code, in the usual order of bytes, i.e. LSB
first.

 .long $f1234,99999

.QBYTE Store 32-bit words in big-endian order
(MSB first).

 .qbyte $12345678

.QUAD

.DWORD
Store 32-bit words in little-endian order
(LSB first).

 .quad $12345678

.SBYTE

.SB
Like .BYTE, but understands the given
bytes as ASCII values, and converts them
to Atari screen codes before storing in the
object code.

 .sbyte "Time:"
 .sbyte +$60,"NAME"

.TBYTE Stores 24-bit long words in the memory in
the reverse order of bytes, i.e. MSB first. In
other words, it is to .LONG like .DBYTE
to .WORD.

 .tbyte $abcdef

.WORD

.WO
Stores 16-bit words in the object code, in
the usual order of bytes (LSB first).

 .word $e477,20133

5. Code generation control

Directive Synopsis Examples

22

[
...
]

Define a block of code to be used with the
conditional pseudo-instructions Rcc and
Scc. If the block contains no code or data
directives, the assembler will generate a
warning.

 ldy #$00
 [
 lda $2000,y
 sta $3000,y
 iny
]
 rne

.CODE Switch the PC to the code section (or:
switch back, because the code section is
the default one). In practice, it marks an
end of the block which was started with
.ZP, .DATA or .BSS. See below the section
on Declaring zero-page locations.

 .zp
xy .ds 2
 .code
 lda xy

.DATA Switch PC to the DATA section. This code
allows you to declare initialized static
variables, which later will be accumulated
in one continuous memory block. See be-
low the section on Sections DATA and BSS.

 .data
foo .byte 1,2,3
 .code

.INIT w Specify a value for the INITAD vector
($02E2). The corresponding init segment
will be generated immediately. This
keyword is allowed for .REL blocks, but has
no effect – the binary loader does not sup-
port partial execution of relocatable binar-
ies.

 .init setup

.MC w Move the following code to a different ad-
dress than the one specified by the .ORG
or .ABS directives. The difference is that
the .ORG/.ABS address will be used as the
program counter to calculate addresses,
while the .MC address will be used to cre-
ate binary headers of the absolute type
(with the signature of $FFFF or $FFFA). In
the example shown on the right, the code
will be assembled to run at $2000, but the
binary loader will load it at $0600 – the
code block must be copied over before be-
ing started. Thus every use of .MC is likely
to generate binary headers (unless they
are disabled with .OPT H-). „Moving” to
current address (.MC *) disables the effect

 .org $2000
 .mc $0600

23

of this keyword. Remark: this keyword is
only allowed inside the CODE section.

.ORG w

.OR w
Specifies the address where (a portion of)
the object code has to be stored in the
memory. This generates the Atari-style ab-
solute binary segment (type $FFFF). The
assembler is able to generate up to 1024
separate segments within one binary file.
Related: .ABS
Remarks: when ‘w’ is equal to the current
PC value, no new header will be generated.

 .org $2000

.RUN w Specify a value for the RUNAD vector
($02E0). If "w" is non-zero, the RUN seg-
ment will be generated and appended at
the end of the object file. This keyword is
allowed for .REL blocks.

 .run start

6. Memory allocation control

Directive Synopsis Examples

.BSS [base] Switch the PC to the BSS section. This
keyword allows you to declare uninitial-
ized static variables anywhere in your
code. The assembler will then accumulate
them automatically in one continuous
memory block (which may be assigned,
for example, to a 16k RAM bank or to a
different 64k memory segment). The us-
age of the keyword is quite similar to .ZP,
with some minor differences. See below
the section on Sections DATA and BSS.

 .bss
xy .ds 2
 .code

.DS w Declare Storage. In all sections besides
DATA, it reserves the "w" number of bytes
as uninitialized data array (as small as 1
byte – 0 will generate a warning). In other
words, it does not generate code or data, it
just adds the given number to the current
PC during assembling, thus making an
empty "gap" in the memory. In DATA sec-

 .ds 32

24

tions it generates the specified number of
zeros, being an equivalent to .DC w 0. See
also the remarks on .REL.

.RS w Define size of an individual variable with-
in a structure. The space will be of "w"
bytes (0 is allowed, it may be used to cre-
ate an „union”, i.e. an alias name for a field
already named inside a structure). See be-
low the section on Defining structures in
the memory and on the stack.

 .rs 2

.RSSET w Beginning of a structure. The "w" is the
offset of the structure's first element. Neg-
ative values allowed.

 .rsset 0

.ZP [b] Switch the PC to the Zero Page section.
This keyword allows to declare zero page
variables anywhere in your source code.
See below the section on Declaring zero
page locations.

 .zp $80
 .zp

7. Label control

Directive Synopsis Examples

.LOCAL lb Define new local namespace named "lb".
This automatically ends the current local
namespace and switches to the new one.
When only terminating the local
namespace and switching to the global
one is needed, the directive should get no
parameters. The "lb" label size is limited
to 64 characters.

 .local init0
init ...
 .org $02e2
 .word init
 .local

.SET lb = x Change the value of the label "lb" which
was already defined and has a value as-
signed. The form with the dot (backwards
incompatible with MAE, but preferred by
the vast majority of the millions of users) is
official as of 0.93.

 .set zpc = $0100

.USED lb,... Mark the specified label(s) as “used”, i.e.
referenced. It may happen that a label is

 .used foo,bar

25

assigned to a memory variable which is
used implicitly (e.g. as one of two byte val-
ues being fetched or written to at once as
a word) or by some external code. So this
keyword is useful to improve the reliabil-
ity of the final statistics ELSA prints on the
screen about the number of the labels
defined and used, as well as it prevents
you from inadvertently deleting such a
variable from the source code. The label
specified must be defined in the second
pass.

8. Input/output control

Directive Synopsis Examples

.BIN fn

.BI fn
Binary Include. Unlike in MAE, the con-
tents of the file is not interpreted in any
way, it is just verbatim inserted into the
object code. When the file about to be in-
cluded is located on a file system which
does not provide reliable information on
file's length (such as AtariDOS/MyDOS file
system), use .OPT F- before calling this
directive (and .OPT F+ afterwards). This
causes the file being included to be physic-
ally read out on both passes.

 .bin pic.bmp

.INCDIR fn Define a default directory for the .IN-
CLUDE directive. When the given string
does not end with a path separator, the
assembler will append one. When no ar-
gument is given, any previously defined
string will get deleted.

 .incdir >foo>

.INCLUDE fn

.IN fn
Includes another source file found at the
given pathname. When no device specific-
ation was given, a „D:” is prepended auto-
matically. A special character $ at its first
occurrence within the pathname will get
replaced with the string that has been
defined using .INCDIR. For example,

 .include math.s
 .include $bar.s

26

after .INCDIR >FOO>, a D2:$BAR.S spe-
cified as an argument to .INCLUDE will be
expanded into D2:>FOO>BAR.S. And when
nothing was defined, the $ will simply get
removed from the pathname.
These directives can be nested (i.e. the in-
cluded file may contain .INCLUDE direct-
ives), just remember that the stack space
is not unlimited.

.OUT fn

.OU fn
Specifies the name of the object code. This
directive will get ignored, if the output file
was specified in the command line. When
this file name is not specified either way,
the object code will not be stored any-
where.

 .out test.com

.STDINC fn As in STanDard INClude. This is basically
the same as .INCLUDE, with one addition-
al feature, namely that all labels defined in
the file being included are internally
marked as „standard”. The standard labels
are not reported as defined or used at the
end of the assembly – and this may be
useful, if you want to know, how many la-
bels are defined, and how many of them
are never used, by the local source files of
your program, not counting the global
system equates it possibly also includes.
In other words, using this keyword for
common includes causes assembling your
programs with /V parameter make actual
sense.

 .stdinc vbxe.i
 .stdinc $sysequ.i

9. Listing control

Directive Synopsis Examples

.LC Switch off ("clear") the assembly listing. (see .LS)

.LL List just the following line. .ll
 sta 24*offset+l,x

.LS Switch on ("set") the assembly listing. .ls

27

.LS fn When no additional parameters are given,
the listing will be displayed on the screen.
When the „fn” (or file name) was given,
the listing will be written to the specified
file instead. You can disable it temporarily
with .LC then re-enable with .LS, but the
parameter „fn” can be used only once –
any later time it will be ignored.

 .org $0600
start
 jmp $e477
 .end
 .lc

10. SpartaDOS X support

Directive Synopsis Examples

.ABS w Like .ORG, but enables the assembler to
generate SpartaDOS-style absolute binary
headers (signature $FFFA) instead of At-
ari-style ones ($FFFF). ABS segments (un-
like the .ORG segments) allow to use ex-
ternal label (.XREF or .XREFW) references
within themselves.
.ABS cannot be used, when some data or
code was already generated with .ORG –
and vice versa, .ORG cannot be used
after .ABS.

 .abs $2000

.REL b Generate SpartaDOS X relocatable binary
block ($FFFE). The „b” parameter is the
control byte to be inserted into the head-
er: when its bit 7 is set to 1, an „empty”
block will be generated, i.e. the instruction
for the SpartaDOS X system loader to al-
locate up to 65535 bytes of memory for
uninitialized variables; and when the bit 7
is cleared, the „relocatable text segment”
will be generated, i.e. a position-independ-
ent block containing up to 65535 bytes of
code and/or data. For the meaning of
lower 7 bits please refer to the SpartaDOS
X programming documentation. The .REL
segments (unlike .ABS segments) allow to
use both XREF and XDEF declarations
within themselves. In the .REL segments

 .rel $00

28

with b < $80 (relocatable text segments)
the .DS directive generates zeros, whereas
on b>= $80 (memory allocation segments)
the .DS directive generates offset (i.e.
empty space).

.XREF lb Declare a label, named „lb”, as an external
symbol. Its value is unknown at the as-
sembly time, it gets defined when the pro-
gram is loaded to the memory. It is as-
sumed that such a symbol is an address
pointing to an object in the global
memory: therefore the only form of arith-
metic on those which makes sense is
adding or subtracting constant values (off-
sets). The result of arithmetic performed
on an external label may be assigned to a
new label, in that case the latter becomes
an alias to the former (inheriting its XREF
status and the originally associated sym-
bol name too). Also see below.

 .xref PRINTF

.XREFW lb The same as .XREF, except that it declares
the specified symbol as „weak”. A weak
symbol, when not defined during loading
a binary requesting it, does not cause an
error, it is ignored instead. It is useful to
check for symbols optionally present in
the system without engaging system calls
such as S_LOOKUP. This feature is suppor-
ted as of SpartaDOS X 4.50.

 .xrefw _RAWCON

The standard 6502 SpartaDOS X loader only allows a program to
contain up to 7 .REL-type blocks, therefore ELSA up to v. 0.99 also had
this limitation. As of version 1.0, however, it allows up to 127 blocks:
such binaries are handled by the extended 65C816 loader (embedded
in the 65816.SYS driver), but even using that one the 6502 address
space is still limited to 7 relocatable blocks: the extra ones are allowed
for the 65C816 High RAM only.

Remark 1: in relocatable programs it is not allowed to split-up ad-
dresses into separate bytes or words, because the binary loader would not
be able to fix them up properly.

Remark 2: it is not allowed to use the PC-relative addressing mode

29

(Bxx, BRL, PEA/PER) to reference a block of code different than the one
which contains the instruction. This is most visible in branch instructions:
it is not allowed to do a branch (even the BRL) from one program block to
another one, because at the assembly time it is not possible to predict
where the respective blocks will get loaded to the memory, and as a con-
sequence, it is also impossible to calculate the relative offset between
them. But, of course, there are no objections to use PC-relative instruc-
tions to reference locations within the same („their”) block of code.

10.1 Example code: 6502 emulation mode

 .out exa.com ;output binary name

 .xref PRINTF ;import global symbol

 .rel 0 ;mem index 0 (conventional 64k)
@exa% ;export @EXA to global symbols
 jsr PRINTF ;call SpartaDOS X library
 .byte $9b,”Hello world!”,$9b,0
 rts ;end program

10.2 Example code: 65C816 native mode

Remark: the program requires the EXT816.SYS module to be loaded.

 .out exb.com ;output binary name

 .xref H_PRINTF ;import global symbol

dosvec = $0a ;define system vector location

 .rel 0 ;mem index 0 (conventional 64k)

 .cpu 16 ;tell ELSA we will be switching modes
 .rb ;tell ELSA all registers are 8-bit
@exb% ;export @EXB to global symbols
 clc ;switch to native mode
 xce
 jml >greetme ;call code loaded to high RAM

 .rel 3 ;mem index 3 (high RAM)

 .rb
greetme
 jsl >H_PRINTF ;call 65C816 extension library

30

 .byte $9b,”Hello world!”,$9b,0
 pea (dosvec) ;end program
 cop #$00

31

X. Pseudo-labels

Pseudo-labels are keywords with a value, which can be used in
arithmetic expressions just like normal labels. To differentiate a named
pseudo-label from other labels, ELSA marks them by putting two under-
score characters (__) before and after the label's name (examples be-
low).

All label names beginning with double underscore character ("__")
are reserved and should not be used in programs because of possible con-
flicts with labels declared by the assembler for internal purposes.

The pseudo-labels usually carry numeric values signalizing cur-
rently selected assembling settings, just as register sizes and such
things. Therefore they are particularly useful in conditional blocks star-
ted with .IF.

Label's
name

Synopsis

* Current value of the Program Counter within the program be-
ing compiled. Note that the assembler maintains more than
one Program Counter, e.g. there are separate Program Counters
for the .ZP segment and for the .CODE segment.

__ASIZE__ Current Accumulator size in bytes, as selected by the direct-
ives: .AB, .AW, .RB and .RW.

__BSS__ Current PC value within the BSS section. Note that this is al-
ways a value relative to the BSS base.

__CPU__ Current CPU mode: a value of 8 means the 65C802/65C816
emulation mode, a value of 16 means the 65C802/65C816 nat-
ive mode. If the target CPU is anything below 65C802, the value
returned is always 8.

__DATA__ Current PC value within the DATA section. As in BSS, this is al-
ways a value relative to the DATA base.

__DATE__ Current date, day, month, year, stored as a 24-bit word. E.g. 13
February 2020 is represented as $14020d in the usual little-en-
dian byte order: $0d, $02, $14. If the computer is not running
SpartaDOS X, for this function to work you have to install a
SpartaDOS-compatible "Z:" device in the system.

32

__ISIZE__ Current size of X and Y register in bytes, as selected by the re-
spective directives: .IB, .IW, .RB and .RW.

__M6502__ This has value of 1, if the currently selected target CPU is 6502,
and 0 otherwise.

__M65C02__ 1, if the currently selected target CPU is 65C02, and 0 other-
wise.

__M65SC02__ 1, if the currently selected target CPU is 65SC02, and 0 other-
wise.

__M65C802__
__M65802__

1, if the currently selected target CPU is 65C802, and 0 other-
wise.

__M65C816__
__M65816__

1, if the currently selected target CPU is 65C816, and 0 other-
wise.

__RELCNT__ Total count of .REL blocks defined so far (0 if none).

__RELNUM__ Current .REL block number (0 if .ABS or .ORG block).

__REPT__ Current iteration within the .REPT/.ENDR block.

__RS__ Current offset of the structure defined by the directives .RSSET
and .RS.

__RSSIZE__ Current size of the structure defined by the directives .RSSET
and .RS.

__TIME__ Current time of day, stored as a 24-bit word. 24-hour clock is
used, so e.g. 19:11:05 will be represented as $050b13, i.e. $13,
$0b, $05 in the little endian byte order. If the computer is not
running SpartaDOS X, for this function to work you have to in-
stall a SpartaDOS-compatible "Z:" device in the system.

__ZP__ Current PC within the ZP section, i.e. the zero page defined by
the .ZP directive.

33

XI. Pseudo-instructions

A pseudo-instruction (otherwise known as a macro-instruction) is
a kind of a hard-coded macro: the assembler presents it under a single
mnemonic, but during the assembling this mnemonic is expanded into a
series of actual CPU instructions.

The general rules for a pseudo-instruction in ELSA are these:
1) a pseudo-instruction has to follow the syntax of a real instruc-

tion, i.e. only the otherwise existing addressing modes are allowed;
2) a pseudo-instruction must not generate confusing side effects,

e.g. so that one which claims to modify the memory also modifies the
accumulator and flags, without a warning.

ELSA implements these:

Syntax Synopsis Expands to

ADD ... Add without carry. The same addressing
modes are available as for the ADC, this
pseudo-instruction is just 1 byte longer
and takes 2 cycles more. Counterpart:
SUB.

 clc
 adc ...

ASR Arithmetical Shift Right. As LSR, but the
highest order bit (= sign bit) of the Accu-
mulator is preserved. Implied address-
ing only. 3 and 4 cycles for 8-bit Accu-
mulator, or 4 bytes and 5 cycles for a 16-
bit one.

 cmp #$80
 ror
or:
 cmp #$8000
 ror

B2H Binary To Hex: convert the lowest nibble
of the accumulator into the correspond-
ing hex digit, and store the digit in the
lowest byte of the Accumulator. If other
nibbles of the Accumulator (8-bit or 16-
bit in respective modes) contain any-
thing but zeros, this instruction may
yield undefined results. 6 bytes, 8 cycles
for 8-bit Accumulator, 8 and 10 respect-
ively for 16-bit Acc.

 cmp #$0a
 sed
 adc #$30
 cld
or:
 cmp #$000a
 sed
 adc #$0030
 cld

BSL address Branch to Subroutine Long: a posi-
tion-independent equivalent of JSR, with
the range of a 32k in either direction. 6

 per ret-1
 brl address
ret

34

bytes, 10 clock cycles.

BSR address As above, just the branch is short: the
range is 128 up or down. 5 bytes, 9 clock
cycles (or 10, when the branch has to
cross a page boundary).

 per ret-1
 bra address
ret

DEW address
DEW address,X

Decrement Word. The Accumulator gets
clobbered in the process and NZ flags
are left inconsistent, so the assembler
will throw warnings because of that. 8 to
11 bytes, zero page min. 11, max. 15
cycles (17 when index is crossing page
boundary), absolute min. 13, max. 18
(20 when index is crossing page bound-
ary).
When the target CPU is 65C802 or
65C816 and the currently selected Accu-
mulator and Memory size is 16 bits
(M=0), DEW is compiled to a single DEC
instruction (7 cycles for the zp, 8 for the
absolute addressing mode), which
leaves the NZ flags both valid after-
wards.

 lda address[,x]
 bne skip
 dec address+1[,x]
skip
 dec address[,x]
or:
 dec address[,x]

DWA address
DWA address,X

Decrement Word using Accumulator.
Like DEW, but makes explicit the inter-
mediate use of the Accumulator (hence
no warning on it being clobbered). Still,
the Accumulator is in undefined state af-
terwards and so are the NZ flags, which
only reflect the state of the LSB of the
word being decremented. 8 to 11 bytes,
zero page min. 11, max. 15 cycles (17
when index is crossing page boundary),
absolute min. 13, max. 18 (20 when in-
dex is crossing page boundary).
When the target CPU is 65C802 or
65C816 and the currently selected Accu-
mulator and Memory size is 16 bits
(M=0), DWA is compiled to the
LDA/DEC/STA series of instructions (10
cycles for the zp, 12 for the absolute ad-
dressing mode), which leaves the NZ

 lda address[,x]
 bne skip
 dec address+1[,x]
skip
 dec address[,x]
or:
 lda address[,x]
 dec
 sta address[,x]

35

flags both valid afterwards, and the res-
ult of the decrementation in the Accu-
mulator.

Ecc Exit (= return from) subroutine if the
condition "cc" is met. 3 bytes, 8 cycles
taken, 3 cycles not taken (or 4, if the
pseudo-instruction components cross a
page boundary). This pseudo-instruc-
tion is convenient when things are about
terminating a subroutine prematurely,
but one should remember that using a
branch to nearest RTS instead of Ecc
may produce better code (i.e. saves one
byte, although usually takes one or two
cycles more).

 bcc skip
 rts
skip

ECC Exit (= return from) subroutine if Carry
Clear.

 bcs skip
 rts
skip

ECS Exit subroutine if Carry Set. bcc skip
 rts
skip

EEQ Exit subroutine if EQual. bne skip
 rts
skip

EGE Exit subroutine if Greater or Equal.
Same as ECS.

 bcc skip
 rts
skip

ELT Exit subroutine if Lesser Than. Same as
ECC.

 bcs skip
 rts
skip

EMI Exit subroutine if MInus. bpl skip
 rts
skip

ENE Exit subroutine if Not Equal. beq skip
 rts
skip

EPL Exit subroutine if PLus. bmi skip
 rts

36

skip

EVC Exit subroutine if V flag Clear. bvs skip
 rts
skip

EVS Exit subroutine if V flag Set. bvc skip
 rts
skip

INW address
INW address,X

INcrement Word. Like an INC address,
but increments a word located at ad-
dress and address+1. When the address
is on the zero page, occupies 6 bytes and
takes 8 to 12 cycles; when outside the
zero page, 8 bytes and 9 to 14 cycles.
The N flag is not in a consistent state af-
terwards, Z is.
When the target CPU is 65C802 or
65C816 and the currently selected Accu-
mulator and Memory size is 16 bits
(M=0), INW is compiled to a single INC
instruction, and then the NZ flags are
both valid afterwards.

 inc address[,x]
 bne skip
 inc address+1[,x]
skip
or:
 inc address[,x]

Jcc address Jump if the condition "cc" is met. It is an
absolute version of conditional branches
Bcc with identical meaning, but the
jump range of 64k instead of +/-128
bytes. 5 bytes, 5 cycles taken, 3 cycles
not taken (or 4, when the instruction
components cross a page boundary).

 bcc skip
 jmp address
skip

JCC address Jump if Carry Clear. bcs skip
 jmp address
skip

JCS address Jump if Carry Set. As above, with the op-
posite condition.

 bcc skip
 jmp address
skip

JEQ Jump if EQual. bne skip
 jmp address
skip

JGE Jump if Greater or Equal. Same as JCS. bcc skip
 jmp address

37

skip

JLT Jump if Lesser Than. Same as JCC. bcs skip
 jmp address
skip

JMI Jump if MInus. bpl skip
 jmp address
skip

JNE Jump if Not Equal. beq skip
 jmp address
skip

JPL Jump if PLus. bmi skip
 jmp address
skip

JSL [abs]
JSR [abs]

Jump to Subroutine Long, indirect. Like
JSR (abs), just using a long pointer (loc-
ated at address abs in segment 0), there-
fore requiring RTL to return. Only avail-
able for 65C802 and 65C816 targets.
Note that the pointer abs must be loc-
ated in segment 0. 7 bytes, 15 cycles.

 phk
 pea ret-1
 jml [address]
ret

JSR (abs) Jump to SubRoutine, indirect. Like JMP
(abs), just pushing the return address
onto the stack. Only available for
65C802 and 65C816. Note that the
pointer abs must be located in segment
0. 6 bytes, 11 cycles.

 pea ret-1
 jmp (address)
ret

JVC Jump if V flag Clear. bvs skip
 jmp address
skip

JVS Jump if V flag Set. bvc skip
 jmp address
skip

PHR Push Registers. Counterpart: PLR. The
size and execution time depends on the
target CPU and current circumstances:
6502: 5 bytes and 13 cycles;
65C02: 3 bytes and 9 cycles
65C802/816: 3 bytes and

 pha
 phx
 phy
or (for 6502
target):
 pha

38

* 9 cycles for all registers byte-sized;
* 10 cycles for word-sized accumulator;
* 11 cycles for word-sized index re-
gisters;
* 12 cycles for all registers word-sized.
Note that on 6502 there is an unpleasant
side effect: the Accumulator content gets
lost - after the PHR's execution A contains
a copy of the Y register. The assembler
will therefore generate a warning in this
case.

 txa
 pha
 tya
 pha

PLR Pull Registers. The reverse of the PHR.
The size and execution time depends on
the target CPU and current circum-
stances:
6502: 5 bytes and 16 cycles;
65C02: 3 bytes and 12 cycles
65C802/816: 3 bytes and
* 12 cycles for all registers byte-sized;
* 13 cycles for word-sized accumulator;
* 14 cycles for word-sized index re-
gisters;
* 15 cycles for all registers word-sized.

 ply
 plx
 pla
or (for 6502
target):
 pla
 tay
 pla
 tax
 pla

Rcc Repeat previous instructions if condi-
tion "cc" is met. This pseudo-instruction
comes in two flavours. In its simple form
it just follows one instruction which is to
be repeated, in this manner:
 lda vcount
 rne
In its more complex form, an entire
block of instructions can be repeated.
The block should be defined using the
directives [and], in this manner:
 ldy #$00
 [
 lda $2000,y
 sta $3000,y
 iny
]
 rne
When the branch is in 8-bit signed

loop ...
 bcc loop
or:
loop ...
 jcc loop

39

range, this pseudo-instruction is com-
piled as a Bcc, or as a Jcc otherwise.
Therefore the resulting object code may
accordingly vary in code size and execu-
tion time.

RCC Repeat instructions if Carry Clear. loop ...
 bcc loop
or:
loop ...
 bcs skip
 jmp loop
skip

RCS Repeat instructions if Carry Set. loop ...
 bcs loop
or:
loop ...
 bcc skip
 jmp loop
skip

REQ Repeat instructions if EQual. loop ...
 beq loop
or:
loop ...
 bne skip
 jmp loop
skip

RGE Repeat instructions if Greater or Equal.
Same as RCS.

loop ...
 bcs loop
or:
loop ...
 bcc skip
 jmp loop
skip

RLA Rotate bits Left in Accumulator. Counter-
part: RRA. Unlike in ROL, the highest bit
is copied not only to the C flag, but also
to the bit 0. Timings are identical as in
ASR.

 cmp #$80
 rol
or:
 cmp #$8000
 rol

RLT Repeat instructions if Lesser Than. Same
as RCC.

loop ...
 bcc loop

40

or:
loop ...
 bcs skip
 jmp loop
skip

RMI Repeat instructions if MInus. loop ...
 bmi loop
or:
loop ...
 bpl skip
 jmp loop
skip

RNE Repeat instructions if Not Equal. loop ...
 bne loop
or:
loop ...
 beq skip
 jmp loop
skip

RPL Repeat instructions if PLus. loop ...
 bpl loop
or:
loop ...
 bmi skip
 jmp loop
skip

RRA Rotate bits Right in Accumulator. Coun-
terpart: RLA. Unlike in ROR, bit 0 is
copied straight into the highest bit. 5 to
6 bytes, 5 to 7 cycles.

 lsr
 bcc skip
 ora #$80
skip
or:
 lsr
 bcc skip
 ora #$8000
skip

RVC Repeat instructions if V flag clear. loop ...
 bvc loop
or:
loop ...
 bvs skip

41

 jmp loop
skip

RVS Repeat instructions if V flag set. loop ...
 bvs loop
or:
loop ...
 bvc skip
 jmp loop
skip

Scc Skip following instruction if condition
"cc" is met. This pseudo-instruction pre-
cedes the instruction which is to be
skipped, in this manner:
 inc adr
 sne
 inc adr+1
In the more complex form the [and]
may be used to define the block to skip:
 lda $2000
 seq
 [
 ldy #$00
 [
 lda $2000,y
 sta $3000,y
 iny
]
 rne
]
Remark: in the current implementation
no global labels may be defined within
the scope of this pseudo-instruction. For
example, the following:
 sne
reset jmp $e477
 ...
will cause the assembler to throw an er-
ror. Also, the Scc pseudo-instruction
branch range is 127 bytes only. When the
defined block exceeds this range, the as-
sembler will throw an error.

 bcc skip
 ...
skip

42

SCC Skip instruction if Carry Clear. bcc skip
 ...
skip

SCS Skip instruction if Carry Set. bcs skip
 ...
skip

SEQ Skip instruction if EQual. beq skip
 ...
skip

SGE Skip instruction if Greater or Equal.
Same as SCS.

 bcs skip
 ...
skip

SLT Skip instruction if Lesser Than. Same as
SCC.

 bcc skip
 ...
skip

SMI Skip instruction if MInus. bmi skip
 ...
skip

SNE Skip instruction if Not Equal. bne skip
 ...
skip

SPL Skip instruction if PLus. bpl skip
 ...
skip

SVC Skip instruction if V flag Clear. bvc skip
 ...
skip

SVS Skip instruction if V flag Set. bvs skip
 ...
skip

SUB Subtract without carry. The same ad-
dressing modes are available as for the
SBC, this pseudo-instruction is just 1
byte longer and takes 2 cycles more.
Counterpart: ADD.

 sec
 sbc ...

43

XII. Instruction aliases

 An alias is just an alternative mnemonic for an instruction. ELSA
implements a handful of these, mostly following the CPU producer's ad-
vice.

Syntax Synopsis Equivalent
to

bge adr Branch if Greater or Equal. bcs adr

blt adr Branch if Lesser Than. bcc adr

clr adr
clr adr,x

Clear the specified memory location. stz adr
 stz adr,x

cpa ... Compare with the Accumulator. cmp ...

dea Decrement Accumulator. dec

hlt Halt the processor. stp

ina Increment Accumulator. inc

lsl ... Logical Shift Left asl ...

pei (zp) Push Effective address, Indirect (move word from
ZP to stack)

 pea (zp)

per adr Push Effective address, Relative pea adr

swa SWap Accumulator halves. xba

tad Transfer Accumulator to Direct page register. tcd

tas Transfer Accumulator to Stack pointer. tcs

tda Transfer Direct page register to Accumulator. tdc

tsa Transfer Stack pointer to Accumulator. tsc

44

XIII. Alternative syntax for some instructions

Some instructions have been given alternative syntax as if they had
additional addressing modes, which they obviously do not have; in-
stead, it is just the way ELSA is allowing the programmer either to omit
mandatory argument(s), when the value of the argument(s) is implied,
or to control whether to add the argument or not for special purposes.

So, first of all, you can omit the arguments for MVN/MVP, if both ar-
guments are to be zeros:

Basic syntax Alternative syntax

mvn 0,0 mvn

mvp 0,0 mvp

This does not change the code being generated, i.e. the mnemonic
MVN without its arguments specified will generate the same code as
MVN 0,0.

Another case are the instructions BRK and WDM. Both are in fact
two-byte, but the basic syntax does not allow to specify the immediate
argument. So ELSA allows this:

Basic syntax Alternative syntax

brk brk #$xx

wdm wdm #$xx

This does change the code generated. For example, BRK alone will
cause two zero bytes ($00, $00) to be generated to the object file, but
f.e. BRK #$80 will generate $00 $80 instead.

The next case is BIT absolute:

Basic syntax Alternative syntax

bit abs bit

The alternative syntax will cause just one byte ($2C) to be gener-
ated to the object code. As the instruction in fact occupies 3 bytes, this
may be used to mask out any following two-byte instruction, effectively

45

skipping it. This effect was traditionally accomplished by putting .BYTE
$2C into the instruction stream, ELSA just makes it more explicit.

Basic syntax Alternative syntax

bcc label bcc

bcs label bcs

beq label beq

bne label bne

bpl label bpl

bmi label bmi

bvc label bvc

bvs label bvs

The purpose of these is the similar as above, i.e. masking out any
following one-byte instruction. To accomplish that you just need to re-
cognize the current condition, then use the branch for the exactly op-
posite condition to use it to skip something. For example:

clear clc
 bcs
set sec
 ror flag

Calling the location marked with the label CLEAR will clear the C
flag, then the following BCS branch will get ignored together with the
SEC instruction which will get interpreted as its argument - and this ef-
fectively makes it skipped.

The BIT zp instruction is traditionally used for this purpose (by in-
serting .BYTE $24 into the instruction stream), but using a branch takes
one cycle less and, unlike BIT, does not generate spare memory ac-
cesses.

46

XIV. Divergences from the WDC-recommended syntax

The main divergence from the syntax and mnemonic names, which
are recommended by the WDC, concerns the PEA instruction. The WDC
syntax is this:

PEA $xxxx – PEA absolute
PEI ($xx) – PEA direct page indirect
PER $xxxx – PEA relative

But this "PEA absolute" simply pushes its 16-bit argument value
onto the stack, so you could think that naming it (the argument) "abso-
lute effective address", especially in a machine where effective absolute
addresses are 24-bit, is quite an overstatement. Sure, we write JMP
$xxxx, and speak of the instruction as being in absolute addressing
mode, but JMP actually uses its argument as an address to change the
current location of the PC within the code. If we were thinking of JMP as
of a 16-bit move (which it technically is), we could symbolically write it
down as MOVE #$xxxx,PC – and yes, in this context, with the hash.

So, ELSA (and some other assemblers) are treating the first in-
stance of PEA as being in immediate mode. Therefore the syntax is as
follows:

ELSA syntax WDC syntax

pea #$xxxx pea $xxxx

pea ($xx) pei ($xx)

pea $xxxx per $xxxx

As hinted in the previous section, you can still use PEI ($xx) and
PER $xxxx besides PEA ($xx) and PEA $xxxx, respectively.

47

XV. Declaring zero-page locations

Zero-page variables may be declared the traditional way, i.e. as-
signing labels fixed values, like this:

pointer = $80
temp = $82

or, more conveniently, using the .ORG directive to set the PC at a
zero-page address combined with the .DS directive reserving space, like
this:

 .org $80
pointer .ds 2
temp .ds 1

Both ways, however, are troublesome when writing or maintaining
a larger program which is distributed among several source files (or
„modules”); it is best to have the variables declared in the very module
which uses them, but the former way makes it difficult to track among
several files which locations are occupied and which are not, and the
latter one is little improvement: you can easily allocate blocks of vari-
ables, but still there may be conflicts, difficult to track down and solve,
between the blocks declared by different modules of the program.

So, ELSA provides a mechanism which allows to automatically al-
locate zero-page variables so that they may be freely declared globally
anywhere in the program, and are sequentially allocated at assembly
time so that no conflicts are possible and you do not need to trouble
yourself with assigning actual addresses.

To accomplish this, ELSA provides two keywords:

.ZP – which begins the zero-page declaration block, and

.CODE – which ends the block.

Between these you declare your variables using the .DS directive,
for example:

 .zp $80
pointer .ds 2
temp .ds 1
 .code

48

The number to the right to the .ZP directive is the base of the zero-
page variables to be declared for the entire program. Declaring this is
required for the first .ZP directive in your program. But for all following
.ZP directives this number should be omitted: the subsequent ones will
then pickup the zero-page address where the last one left it and per-
form the sequential allocation as desired.

Following the example above, the next declaration block may look
like this:

 .zp
cx .ds 1
cy .ds 1
cz .ds 1
 .code

These two blocks declare the following locations: POINTER = $80,
TEMP = $82, CX = $83, CY = $84, CZ = $85. Any third declaration block
will then begin allocation at the address $86 and so on. Of course, as
much actual code or data as you want may intervene between these
blocks, so that zero-page variables can easily be declared not only by
the modules they belong to, but they also can be just declared straight
before the actual procedures which use them.

Technicalia: all this works so that the .ZP maintains own program
counter. The numeric parameter next to .ZP sets this counter to a value
(which is $00 by default). Each .DS directive increases the counter,
and .CODE switches back to the „main” program counter, while the .ZP
counter remains intact. Any next .ZP directive (without any additional
parameters) will switch to the .ZP counter and use its current value as
the starting point for the allocation. The counter is 32-bit, each time it
spans a 256-byte boundary the assembler generates a warning.

49

XVI. Sections DATA and BSS

The keywords .DATA and .BSS allow your program to contain sep-
arate sections which will accumulate initialized (.DATA) or uninitialized
(.BSS) variables. This way you will be able to easily split your program
into two memory blocks: the code on the other side, and the data on the
other side. This in turn will allow to prepare programs which can store
its code and data in separate address spaces (such as separate 64k seg-
ments of memory).

Even if your program will run in unified address space (like all
6502 programs do), the BSS section can still be useful. In small pro-
grams (fitting entirely in one source module) it is usually not necessary
to define a separate section for that, but in larger assemblies it may be
advantageous to accumulate uninitialized variables in one memory
block. Particularly all sorts of source code libraries may benefit from
that, because these usually want to declare static variables in their own
source files, which in turn, when they get included, makes the object
code more fragmented – and this increases the size of the program and
the necessary loading overhead.

1. BSS section

The basic usage of the .BSS keyword is generally similar to the .ZP:
switch to the BSS section using .BSS, declare space inside using .DS,
switch back using .CODE. For example:

 .bss
cx .ds 1
cy .ds 1
cz .ds 1
 .code

As in the ZP section, no code or initialized data are allowed within
the BSS section. One functional difference is that the BSS section is loc-
ated in the main memory, so you have to use the absolute (or absolute
long) addressing mode to make references to it. Do not worry: even if a
BSS variable is declared at virtual address lesser than $0100, the assem-
bler will never assume that a zero page addressing mode should be used
in the reference. But otherwise everything works as in ZP sections as
long as your BSS is located in a dedicated 64k segment, forming an ad-

50

dress space truly separate from code's.
However, in programs which are smaller than 64k it is usually in-

convenient to keep the BSS segment in a separate address space. To put
the BSS section to the same address space where your code is living,
just specify the BSS base address in the parameter, for example:

 .bss $8000

This will make the assembler to allocate your BSS variables from
the specified address onwards. Note: this only defines the BSS base, and
(unlike .ZP adr) does not switch sections. To switch to the BSS section you
still have to use .BSS keyword without the parameter.

If your program has to fit in one 64k segment (as 100% 6502 pro-
grams do), it is usually not very convenient to declare static addresses
for sections – it is more convenient to put the BSS section directly after
the main code block, so that, as this block grows while the program is
being developed, the BSS section also get allocated from higher ad-
dresses so that these never overlap. To accomplish that, put the follow-
ing directive after the last byte of the defined data or code in your pro-
gram:

 .bss *

If you do not add this, all your .BSS variables will get allocated
starting at the virtual address $000000 and you will have to handle this
situation on your own (for example, by allocating a suitable memory
block at a 64k boundary and loading the bits 16-23 of its address to the
DBR register).

Note that the .BSS directives do not increase the code’s program
counter, so in this case, after „.BSS *”, the code’s PC will point to the be -
ginning of the BSS section rather than to the end of it. So if you want to
find out, where is the true end of the memory occupied by your pro-
gram, you will have to add the value of the pseudolabel __BSS__ which
holds the current BSS offset. In the following example the label ENDP
will hold the address of the first byte past the BSS:

 .bss *
endp = *+__BSS__

51

1.1. BSS PC

For certain technical reason the BSS base can be declared only once
in a program: an attempt at redeclaration will cause the assembler to
throw an error. The BSS PC, however, may be changed at will. It is done
with the .ORG directive, there is only one thing to remember, namely
that in this case the .ORG's argument is not an absolute address, but an
offset relative to the BSS base.

Therefore, if you, for example, want your BSS section to occupy two
16k banks of RAM, do this:

 .bss $4000 ;define BSS base: address of bank select RAM
 .bss ;switch to BSS section
bnk1 .ds 16384 ;assign first 16k
 .org $0 ;„reset” the BSS PC back to BSS base
bnk2 .ds 16384 ;assign another 16k
 .code ;switch out of the BSS section

The labels BNK1 and BNK2 will both get assigned to the same ad-
dress: $4000 and will be pointing to two overlapping areas, 16384
bytes each. It is of course up to the program to arrange things so that
they do not physically overlap, but are properly assigned to different
banks of RAM.

1.2. BSS section in REL blocks

In SpartaDOS X relocatable executables everything seemingly
works as depicted above. But in fact there is no real BSS section in this
case: the variables declared inside .BSS/.CODE scope are created as usu-
al, but the „.BSS *” at the end of a .REL block will implicitly aggregate
them into a separate .REL block allocating memory.

Therefore you may get an impression that there are multiple .BSS
sections possible, but beware: every .BSS * appended at the end of a
.REL block is in fact an equivalent to .REL $80 – and the maximum num-
ber of .REL blocks in a program is currently only 7!

Also, for that same reason – no real BSS – you cannot use the .ORG
directive to change the BSS PC value.

52

2. DATA section

The DATA section works similarly to the BSS section, except that it
contains actual data (no code or offsets are allowed). The DATA section
accumulates the data being generated by keywords such as .BYTE,
.WORD etc. then stores them all in one large binary block, which will be
appended at the end of the object code. For example:

 .data
cx .byte 0
cy .byte 0
cz .byte 0
 .code

The remarks about addressing are the same as in the case of the
BSS section. You define the DATA section base by putting this at the end
of your program:

 .data *

And if you want to find out the first byte past the DATA section, do
this:

 .data *
endp = *+__DATA__

Also the .ORG directive, when used within the DATA section, works
the same way as in the BSS section.

2.1. DATA section in REL blocks

In the current implementation it is not possible to use the .DATA
keyword inside a .REL block – this will throw an error.

3. Combining DATA and BSS sections

When your program contains both DATA and BSS sections, and all
this has to fit within the same address space with the code, you have to
define the sections' bases so that they would not overlap. If you want to
keep the most natural order of sections, i.e. CODE first, then DATA, and
BSS at the end, the following appended at the end of the last code block
will do the trick:

53

 .data *
 .bss *+__DATA__

4. DATA/BSS quirks

The declaration of the section base at the end of your code will
cause the addresses declared within that section to get assigned differ-
ent values in the first and the second assembly pass. This may cause ob-
scure phase errors, for example:

 .org $2010
 .data
text .byte "HELLO!",$9b
 .bss
txtadr .ds 2
 .code
start .if text&$00ff
 lda #<text
 sta txtadr
 .else
 stz txtadr
 .endif
 lda #>text
 sta txtadr+1
exit rts
 .data *
 .bss *+__DATA__

The label TEXT will get a value of $000000 in the first pass, and a
value of $002010 in the second pass. Therefore the conditional will in
the second pass cause the code to be 1 instruction shorter than it was in
the first pass, so any label declared after the conditional (here EXIT)
will trigger the phase error. The solution in this case is to .ALIGN the
data section to a page boundary, but it is best to avoid using such tricks
while doing references to the DATA and BSS sections, unless they are in-
deed going to be physically located in a separate address space each.

54

XVII. Defining structures

1. Defining a structure in memory

The keywords .RSSET and .RS (reserve space) are aimed at defining
a data structure without reserving the actual memory space for it.1 The
difference between .DS and .RS may be illustrated by the following ex-
amples:

 .org $2000
dot
?cx .ds 1
?cy .ds 1
?cz .ds 1
?cc .ds 1
dsz = *-dot

After this, four bytes at address $2000 are allocated for the struc-
ture named DOT. The component DOT?CX is to be found at $2000, DOT?
CY at $2001, DOT?CZ at $2002, and DOT?CC at $2003. The program
counter value ('*') after this will be $2004. The variables in the struc-
ture, having been assigned to memory locations, are accessed just as
other local labels, e.g.

 lda dot?cx

If you need to declare more DOTs, you have to either assign each a
name (DOT1, DOT2, DOT3, ... DOT99 etc. which is absurd) or to declare
empty space for the rest of them:

dot
?cx .ds 1
?cy .ds 1
?cz .ds 1
?cc .ds 1
dsz = *-dot
 .ds dsz*99

Now compare with .RS:

1 The idea of these keywords and their operation was borrowed from HiSoft's
Devpac for Atari ST.

55

coords .rsset 0
?cx .rs 1
?cy .rs 1
?cz .rs 1
?cc .rs 1
csz = __RSSIZE__

First of all, these are not allocated in the memory and the program
counter value ('*') does not change during definition. This only defines
how a memory location (of size 'CSZ' bytes) will be internally struc-
tured when it will have been eventually allocated. The allocation is to be
done as follows:

dot .ds csz

So now we have defined an abstract structure COORDS, which de-
scribes three-dimensional coordinates and color of an object, then de-
clared a memory object named DOT which uses this structure to hold
its individual coordinates and color. References to this structure can be
made as follows:

 lda dot+coords?cx

This may at first appear more troublesome than the method which
uses .DS, but is in fact very handy when the program has to manage not
even multiple objects sharing the same internal structure, but rather
multiple groups of these, yet not necessarily being allocated consecut-
ively in the memory:

twodots .ds csz*2
temp .ds 4
savedot .ds csz
stack .ds 128
hundreddots .ds csz*100

Any change of the internal organization and size of all these
memory objects only requires redefining the structure COORDS without
redefining all the individual objects or groups of objects which share
this structure. The mechanism described is similar to what C language
does when the programmer is declaring a structure using 'typedef struct'
then assigning memory to it using 'struct' – ELSA itself uses this technique

56

internally to maintain e. g. multiple program counters.
Remark: note that the label COORDS used in the examples above

will actually be assigned an address equal to the value of the program
counter ('*') at the time of .RSSET execution. So (quite differently than
in the first example with .DS, where you can reference DOT instead of
DOT?CX and get the same result), you cannot use COORDS alone here as
an equivalent to COORDS?CX, because the former is an absolute ad-
dress, while the latter is an offset. So LDA DOT+COORDS will just add
the address of your memory object to a random address which was in
the PC while the structure COORDS was being defined, which would be
very wrong and would lead your program astray. There is however a
good reason why the assembler allows that and does not even generate a
warning. This reason will hopefully become clear in the following section.

Besides, using such a construction as DOT+COORDS (without spe-
cifying at which one of the internal variables of the structure we are
aiming) would defeat the whole purpose of using the structure (which
is to be able to freely alter the internal organization of multiple memory
objects without re-editing all of them and all of the existing code which
is referencing them).

2. Defining a structure on the stack

Another purpose of the .RSSET and .RS directives is to declare off-
sets for local variables allocated on the stack. It is actually very conveni-
ent to use stack to store variables which are in use only within the
scope of a single subroutine instead of allocating static memory loca-
tions for them: the ZP storage is too short to waste it for that purpose,
and, besides, static variables make the code not re-entrant (which may
be crucial in interrupt handlers, for example). Also there are programs
which simply do not have free static space at their disposal or it is very
limited (such as device drivers running under an operating system),
and if they do find some, there is always a risk of an obscure conflict
with another OS component or even an application program.

In all these cases allocating some stack space, which will vanish
after use, comes in quite handy. For example:

mul_a_by_3
 pha
 asl
 adc $01,s
 plx

57

 rts

It is all very easy when there is just one variable on the stack, but a
slightly larger number of them may already become a trouble: when it
is necessary to re-edit the code and add or remove a variable, all offsets
must be recalculated from scratch, and it is too easy to lose track what
is where. And this is where RSSET/RS come in handy, for instance:

mul_a_by_14
 .rsset 1
?m4 .rs 1 ;this one is on the top of the stack
?m2 .rs 1
 asl
 pha
 asl
 pha
 asl
 adc ?m2,s
 adc ?m4,s
 plx
 plx
 rts

Note that both examples would be of the same size if using zer-
o-page variables instead of the stack, so it is not the code size which we
are gaining here: it is the use of static memory locations which is
avoided this way.

The latter example also provides explanation on why the assembler
allows the label declared straight before the .RSSET to retain its original
value – in this case it is simply necessary (as the label is assigned a valid
address of a subroutine) and for the assembler there is no way to tell the
difference between this situation and the one described in chapter XVII.1
above.

Also note that the .ZP directive may be used for the same purpose,
i.e. allocating variables, which are visible in the scope of a specific sub-
routine (in other words, variables local to that subroutine). This is
wasteful, but in small programs, especially those which have to run on
vanilla 6502, may be very convenient:

mul_a_by_14
 .zp
?m4 .ds 1
?m2 .ds 1
 .code

58

 asl
 sta ?m2
 asl
 sta ?m4
 asl
 adc ?m2
 adc ?m4
 rts

59

XVIII. XREFs and XDEFs

1. XREFs

As of version 0.94 ELSA supports external symbols for use with
SpartaDOS X relocatable binaries. There are two types of external sym-
bols: a) the symbols which have been defined externally in global
memory by the system, your program may want to import these
(XREFs); b) the symbols your program wants to export to the global
memory for the system or other programs to use (XDEFs).

XREFs are declared using the keyword .XREF. The argument to this
keyword is the label of an external symbol which is predefined by the
system and otherwise known (see SpartaDOS X programming docu-
mentation), for example:

 .xref COMTAB

will declare label ‘COMTAB’ so that your program may reference it
without further definition. When your program gets assembled, that la-
bel will cause the assembler to generate an XREF record and append it
to the resulting binary file. At loading time, the SpartaDOS X relocating
loader will take that into account and, if the symbol exists, will resolve it
to an address. XREFs are allowed in .ABS, .REL and .DATA segment
types. An XREF record will contain a symbol name converted to upper-
-case and cut down to 8 characters, when it is longer than that, or space-
padded to 8 characters otherwise.

As for that particular example, COMTAB is the SpartaDOS internal
structure containing many fields located at offsets negative and positive
from the point the symbol points to. Using references such as COMTAB-
4 or COMTAB+255 may be inconvenient, therefore you can assign them
labels, for example:

 .xref COMTAB

divend = COMTAB-6
decout = COMTAB-19
decout2 = COMTAB-21

The references to these „secondary” labels, when used in your pro-

60

gram, will cause the assembler to generate XREF records for the origin-
ating symbol. An XREF-type label is declared as type value (not address!),
and it is to be kept in mind that the result of any arithmetic, where one of
the components is XREF, will also be XREF. It is also not allowed to have
two or more XREFs in one equation – it would not make sense as the exact
value of an XREF is unknown during assembling.

Notice: an XREF label gets a value of 0 by default (the actual ad-
dress being filled in at loading time, as explained above). ELSA’s integer
evaluator performs 32-bit computations, thus any calculation sets all
the 32 bits of the result. Accordingly, COMTAB-1 = 0-1 = -1, and -1 is
$FFFFFFFF in 32-bit integer representation. Thus e.g. LDX COMTAB-1,
intended as being in absolute addressing mode, could easily be „cast” to
the long absolute addressing mode, which in turn does not exist for
LDX! To prevent such unpleasant surprises, the result of an arithmetic
expression which contains an XREF is (as of 0.95) cut down to 16 bits.
Please keep in mind that this does not prevent XREFs from referencing
locations anywhere in the 24-bit address space: this just prevents these
references from spanning 64k boundaries (as e.g. $000000-1 will wrap
back to $00FFFF – but the relocating loader is still able to fill all three
bytes of a longword, when applicable).

2. XDEFs

XDEFs, on the other hand, do not require separate directives, a la-
bel is declared as a symbol to be exported using the declarator ‘%’; for
example, this declaration:

@grep%

will cause the assembler to generate an XDEF record defining the
symbol @GREP. At loading time the SpartaDOS X relocating loader will
append that symbol to the global list, and remove it, when your pro-
gram terminates (unless your program is a TSR). XDEFs are allowed
in .REL segment type only. Unlike XREF, the XDEF status is not preserved
in assignments; in other words, if your assign the @grep label’s value as
defined above to some other label, the latter will not become an XDEF.

61

XIX. Starting relocatable programs

SpartaDOS programs are by default started at the beginning of the
block which was consecutively the first one to be loaded to the memory.
Nevertheless a relocatable program can be started from another point
than its very beginning, and it can be done without additional support
code.

It is just enough to know that the RUNAD vector ($02E0) is still op-
erational and will be used by the loader, when set; and that pointers loc-
ated within an .ABS block will get fixed up during loading. Therefore, as-
suming that START is a label pointing to a location in a relocatable
block, write:

 .run start

This will generate an .ABS block loading the appropriate word
pointer to the RUNAD vector. The program will then be started from
that label rather than from the beginning.

The use of .INIT in a relocatable program is allowed by the assem-
bler and a formally correct binary file will be generated, but the init re-
cords will be ignored by the loader.

62

XX. Error messages

Errors are generated when the assembling process cannot be con-
tinued due to a condition. The assembling is aborted then and ELSA re-
turns to DOS. On SpartaDOS X the error code is handed back to the sys-
tem, so that it can be detected and acted upon in a batch file, for ex-
ample.

Code Error message Synopsis

2 BAD EXPRESSION Invalid syntax of an arithmetic expression
(e.g. unpaired parentheses of a cast operat-
or and such).

3 BAD CONSTANT A numeric constant contains invalid char-
acters.

4 BAD OPERATOR An arithmetic expression contains an un-
known operator.

5 BAD DECLARATION A label to be declared may only begin with
a letter, ?, @ and underscore.

6 BAD ARGUMENT Improper format of arguments in
.FLOAT, .PRINT, .ERROR, .OPT and .SET.

7 ILLEGAL CHARACTER Illegal character within a label's body de-
tected.

8 LINE TOO LONG A source line is longer than 255 characters
(+ EOL).

9 UNDEFINED Undefined label or symbol.

10 MISSING] A [] block was opened, but not terminated
before the end of its source file.

11 LOCAL NOT ALLOWED A local label cannot be used as an argu-
ment to .LOCAL or .XREF directives.

12 MUL/DIV OVERFLOW The result of a multiplication or division
does not fit in 32 bits.

13 DIV BY 0 Division by zero.

14 VALUE OUT OF RANGE The value given as an argument is out of
the range allowed for the specific keyword.

63

Code Error message Synopsis

15 UNKNOWN KEYWORD There is no such CPU instruction or assem-
bler directive.

16 DECLARED TWICE An attempt to declare a label or symbol
that was already declared.

17 NO MATCHING GLOBAL A MAE-style local label was declared out-
side the scope of any global one.

18 BAD SYNTAX 1) Invalid qualifiers in a label, 2) invalid
operators or separators in .BYTE,
.SBYTE, .CBYTE, .ERROR, .PRINT and .SET.

19 UNEXPECTED EOL An end of line character has been en-
countered in the middle of an expression.

20 OUT OF RAM The assembly requires more memory than
available.

21 CODE/DATA NOT AL-
LOWED

There was an attempt to insert code or ini-
tialized data into the ZP or BSS segment.

22 BLOCK COUNT EXCESS A SpartaDOS X relocatable binary has more
than 128 blocks.

23 TOO MANY SEGMENTS An AtariDOS binary file has more than
1024 segments.

24 PHASE/DECLARATION An address generated during the second
assembly phase does not match its value
that had been generated during the first
phase. This usually means a forward-de-
claration of a zero-page label; or, in other
words, a zero-page label was used before
its declaration.

25 NO SUCH ADDR. MODE No such addressing mode for the selected
target processor.

26 IMPROPER ADDR. MODE No such addressing mode for that instruc-
tion.

27 BRANCH RANGE An attempt to branch to a location that is
too far.

28 MUST EVALUATE The value of the expression must be known
in the first assembly pass.

64

Code Error message Synopsis

29 ALREADY OPEN The file specified in .OUT, .INCLUDE,
.STDINC, .BIN is already open.

30 KEYWORD NOT AL-
LOWED

1) .MC is not allowed outside fixed-address
code segments, 2) .ORG and .DATA are not
allowed in SpartaDOS X relocatable pro-
grams 3) Scc and Rcc are not allowed in ZP
segments.

31 Scc: NOTHING TO SKIP Scc is the last instruction in a source file.

32 FILE TOO LONG A source file is longer than 16777215 lines.

33 BASE EXPECTED The first .ZP directive used in your pro-
gram must declare an explicit base address
on zero-page, e.g.:

 .zp $80

34 TOO MANY LEVELS Too many nested directives .IF or .IN-
CLUDE, or [] code blocks.

35 NO MATCHING .IF An .ELSE or .ENDIF was encountered and
there was no matching .IF previously.

36 MISSING .ENDIF An .IF block was not terminated before the
end of its source file.

37 NO NESTING A directive was nested which cannot be
nested.

38 USER-DEFINED Generated by the directive .ERROR

39 NO MATCHING .REPT An .ENDR was encountered and there was
no matching .REPT previously.

40 MISSING .ENDR A .REPT block was not terminated before
the end of its source file.

41 INTERNAL ERROR A label, which was successfully declared,
cannot be found in the symbol table. This
means that the symbol table is corrupt,
which can be amounted either to a bug in
the assembler or a hardware problem.

42 Rcc: NOTHING TO RE-
PEAT

Rcc is the first instruction in a source file.

65

Code Error message Synopsis

43 NO MATCHING [A ']' was encountered and there was no
matching '[' previously.

44 LABEL EXPECTED The .XREF directive expects a label as an
argument.

45 ADDRESS NOT ALLOWED The .SET directive cannot be used to re-
declare addresses. Also, splitting an ad-
dress into LSB and MSB is not allowed in
SpartaDOS X relocatable programs.

46 XREF CONFLICT Two or more external symbols are used
within one arithmetic expression.

47 XDEF NOT ALLOWED XDEFs are only allowed in relocatable
SpartaDOS X binaries.

48 XREF NOT ALLOWED XREFs are not allowed in AtariDOS binar-
ies.

49 BLOCK TOO LONG Program block exceeds 65535 bytes.

50 RELOCATION NOT AL-
LOWED

In a relocatable program, the long absolute
addressing mode was used to reference the
same program block, or the short absolute
addressing mode was used to reference a
different program block (see Appendix A).

51 PCREL NOT ALLOWED PC-relative addressing modes (branches,
PEA) cannot be used to make references
between different blocks of a relocatable
program (see chapter IX, section 10).

52 DATA NOT ALLOWED DATA segments are not allowed in Sparta-
DOS X relocatable programs.

53 ADR. INCOMPATIBLE An attempt was made to perform arithmet-
ics on two incompatible addresses, e.g. to
perform subtraction to calculate offset
between two addresses which do not be-
long to the same memory type in a Sparta-
DOS X relocatable binary program.

66

XXI. Warning messages

Warnings are generated when the assembler detects a condition,
which does not prevent the program from being assembled, but which
may be easily overlooked and it may prove useful to turn programmer's
attention to that. The assembling is not aborted.

Warnings can be disabled using /Q in the command line options, or
using .OPT W- in the source file. The effect of the latter can be reversed
using .OPT W+.

Warning message Synopsis

ADD/SUB OVERFLOW The result of addition or subtraction does not fit
on 32 bits.

VALUE EXPECTED Keyword’s argument should be a value rather
than address.

FISHY MATHS Adding an address to an address, or
multiplying/dividing an address by an address.

SHORT BRANCH? A long branch or a jump can be replaced with a
short equivalent.

NUMBER TOO BIG Instruction’s operand has more bits than expec-
ted.

OFFSET ZERO The operand of a relative instruction is 0.

CROSS-PAGE BRANCH A short branch may be crossing page boundary
(pretty useless in relocatable code).

NO EFFECT ON TARGET
CPU

REP or SEP was used to set or clear the MX bits
and the target CPU declared is not 65C802 or
65C816.

ACC. CLOBBERED A pseudo-instruction (such as PHR) clobbers the
accumulator contents.

EMPTY [] An [] block was declared with nothing in it.

EMPTY REPT A .REPT block was declared with nothing in it.

REPT 0 A .REPT block was declared with 0 repetitions.

NZ LEFT INCONSISTENT A pseudo-instruction (such as DEW) does not
leave the NZ flags in a state reflecting its result.

67

Warning message Synopsis

EXTRA CHARS IGNORED There is some garbage after the last meaningful
piece of text in the source line.

NOT TARGET CPU The instruction does not belong to the target CPU
instruction list (e.g. a BRA on 6502). Use proper
directives to let the assembler know what target
is meant.

ADDRESSING OVERKILL Use of a 24-bit addressing mode on 65C802 tar-
get.

SUSPICIOUS ARG SIZE Immediate argument is an ASCII character, but
the argument size selected is not 8-bit.

KEYWORD IGNORED A directive was overridden by a corresponding
command line switch.

SEGMENT PC EXCESS The program counter crossed the 64k boundary.

NULL JUMP A JMP or JML to an instruction located directly
behind the jump, e.g. JMP *+3.

MX SET IN EMU MODE REP or SEP was used to set or clear the MX bits
while the 65C802/65C816 CPU is in emulation
mode. To suppress this warning, use the directive
.CPU 16.

.RS W/O .RSSET An .RS directive was used without a previous
.RSSET.

SEGMENT LEN EXCESS The program segment length exceeded 65536
bytes.

DECLARED 0 BYTES A .DS or .DC directive's size parameter is 0.

DECLARE DATA BASE The data segment address is not declared in the
program.

BREAKPOINT? A BRK instruction has been encountered. The
reason why it generates a warning is that it may
be a debugging breakpoint, unwanted in the final
version of your program, which was inadvert-
ently left in the source code. This warning can be
disabled using .OPT B-

PROMOTED TO ABS,Y A zero-page reference has been promoted to an
absolute addressing mode due to the Y-indexing.

68

Appendix A: SpartaDOS X system loader relocation rules

Normally, the SpartaDOS X system loader performs fixing up the
16-bit words, which the fixup records or XREF records, appended to the
binary file, identify as 16-bit addresses (within 64k address space) to
be fixed during loading. Loading blocks of code to 130XE-type or Axlon-
type banked memory does not make any difference, because all that
physically fits in the 64k address space.

Extending that scheme to the 24-bit address space requires intro-
ducing additional rules which allow the SpartaDOS X system loader to
decide on the fly if the memory location to be fixed up is a 16-bit word
or a 24-bit long word.

To explain that we have first to define two terms:
a) base block: it is the program’s block which provides the base ad-

dress for relocation. For example, if I have loaded some code at
$002000 and want to reference it from another block (loaded some-
where else), $002000 will be the base address for my relocations: the
relocating loader will add that address to any absolute reference (e.g. a
JSR) I am making to that block.

b) target block: it is the program’s block inside which the relocat-
ing loader will be fixing up the addresses. These locations may contain
absolute references (e.g. a JSR) to the same block (internal references)
as well as to other blocks (external references).

Now, as said already, the default size of all relocations is 16-bit: if I
want to make a JSR from the „target” block to an address in the „base”
block, the assembler will generate a JSR instruction with the argument
relative to the beginning of the block the JSR is aiming at (= the base
block); and the relocating loader, while the program is being loaded,
will fix that word up by adding the base block load address to the argu-
ment of the JSR.

For the 6502’s 64k address space, this is always the case. For the
65C816 24-bit address space the following additional rules apply:

a) if the base block is not the same as the target block, and
b) if the base block is loaded outside the first 64k (segment 0),

then
c) the relocation size is 24-bit.
In pseudocode:

69

fixups = word
if base_block <> target_block

 b1 = base_block_address & $ff0000
 if b1 <> 0
 fixups = long
 endif

endif

This means that:
a) internal references of any block, whenever it is loaded, will be

resolved as 16-bit words; this makes internal long word references pos-
sible only for blocks loaded to the first 64k (segment 0);

b) external references to any block loaded to the segment 0 may be
both 16-bit and 24-bit; in 24-bit long words the most significant byte
will be unchanged by the relocating loader;

c) external references to any block loaded outside the segment 0
must be 24-bit.

70

Appendix B: MAE's directives not supported in ELSA

Directive Synopsis

.24 In MAE this enables 24-bit address calculations (16-bit otherwise).
In ELSA all expressions are evaluated as 32-bit values, so this dir-
ective has no purpose. It causes no error, however.

.EN This is only supported as an alias for .END, and not as an alias
for .ENDIF.

.MD,

.ME, .MG
These are: Macro Definition, Macro End and Macro Global. They
are not supported at the moment because ELSA does not support
macros (yet).

71

Appendix C: MAE's bugs

There are several known bugs in MAE's compiler, here is how ELSA
will behave in the same circumstances:

Code Problem MAE's beha-
viour

ELSA's beha-
viour

somelonglabel012 = 1 Label longer
than 15 charac-
ters.

Likely crash. Labels up to 240
characters are al-
lowed.

lda ($1234),y No such ad-
dressing mode.

Silently accepted
as LDA ($34),Y

Accepted with a
warning as LDA
($34),Y

ldx $800000 No such ad-
dressing mode.

Silently accepted
as LDX $00

Error, improper
addressing
mode.

lda #$<1234 Nonsense syn-
tax.

Silently accepted
as LDA #$01

Error, bad con-
stant.

aa = bb
bb = cc
cc = 1
 .org $0600
 lda aa

AA undefined
during second
pass.

LDA AA silently
accepted as if it
was LDA 32768

Error, undefined
label.

.long 0*2 None apparent. Compiled as
.LONG $2A0000

Compiled as
.LONG $000000

.word -256 None apparent. Compiled as
.WORD $FE00 (=
-512)

Compiled as
.WORD $FF00

72

Appendix D: ELSA's source statistics

* Labels defined: ca 2200 (ca 50 KB)
* Source code lines: ca 16000
* Source code size: ca 192 KB
* Number of source files: 32
* Shortest source file: 70 bytes
* Longest source file: 30 KB

Time spent self-assembling

Rapidus 20 MHz, Fast RD/WR, spinning platter HDD 26 sec.

Rapidus 20 MHz, ditto, Rapidus banked SDRAM
RAM-disk

22 sec.

Antonia 1.77 MHz, case-sensitive mode 330 sec. (5 min. 30 s.)

Time spent creating 6000 labels, 11 characters each

Rapidus 20 MHz, Fast RD/WR, case-sensitive mode
(default)

87 sec. (1 min. 27 s.)

Rapidus 20 MHz, ditto, case-insensitive mode 93 sec. (1 min. 33 s.)

Altirra 21.28 MHz, case-sensitive mode 82 sec. (1 min. 22 s.)

Altirra 21.28 MHz, case-insensitive mode 88 sec. (1 min. 28 s.)

Antonia 1.77 MHz, case-sensitive mode 1089 sec. (18 min. 9 s.)

The code to test the 6000 labels:

 .rept 6000
#
 .endr

Time spent generating 32768 times LDA #$FF

Rapidus 20 MHz, Fast RD/WR 9.60 sec.

Altirra 21.28 MHz 8.68 sec.

Antonia 1.77 MHz 101 sec. (1 min. 41

73

Time spent generating 32768 times LDA #$FF

sec.)

The code:

 .rept 32768
 lda #$ff
 .endr

Time spent creating a 512k file filled with $FFs

ELSA, Rapidus 20 MHz, Fast RD/WR, SpartaDOS X
4.49f, GR.0

72 sec. (1 min. 12 s.)

ELSA, Rapidus 20 MHz, Fast RD/WR, SpartaDOS X
4.49f, VBXE

69 sec. (1 min. 9 s.)

ELSA, Rapidus 40 MHz, Fast RD/WR, SpartaDOS X
4.49f, VBXE

47.04 sec.

MADS 2.1.3, Pentium III 1200 MHz, FreeBSD 8 30.89 sec.

The code for ELSA:

 .out empty.rom
 .opt h-
 .rept 32768
 .hex ff ff ff ff ff ff ff ff
 .endr
 .rept 32768
 .hex ff ff ff ff ff ff ff ff
 .endr

The roughly equivalent code for MADS:

 .opt h-
 .rept 32768
 .byte $ff,$ff,$ff,$ff,$ff,$ff,$ff,$ff
 .endr
 .rept 32768
 .byte $ff,$ff,$ff,$ff,$ff,$ff,$ff,$ff
 .endr

74

	Preface
	I. Operation
	II. Command line arguments
	III. General assembler syntax
	IV. Labels
	1. Label name
	2. General syntax
	3. Local labels, MAE-style
	4. Local namespaces
	5. Definition order

	V. Expressions
	1. Value types

	VI. Constants
	VII. Unary operators
	VIII. Binary operators
	IX. Directives
	1. Target CPU control
	2. Conditionals and general assembly control
	3. Repetitions
	4. Fixed data definition control
	5. Code generation control
	6. Memory allocation control
	7. Label control
	8. Input/output control
	9. Listing control
	10. SpartaDOS X support
	10.1 Example code: 6502 emulation mode
	10.2 Example code: 65C816 native mode

	X. Pseudo-labels
	XI. Pseudo-instructions
	XII. Instruction aliases
	XIII. Alternative syntax for some instructions
	XIV. Divergences from the WDC-recommended syntax
	XV. Declaring zero-page locations
	XVI. Sections DATA and BSS
	1. BSS section
	1.1. BSS PC
	1.2. BSS section in REL blocks

	2. DATA section
	2.1. DATA section in REL blocks

	3. Combining DATA and BSS sections
	4. DATA/BSS quirks

	XVII. Defining structures
	1. Defining a structure in memory
	2. Defining a structure on the stack

	XVIII. XREFs and XDEFs
	1. XREFs
	2. XDEFs

	XIX. Starting relocatable programs
	XX. Error messages
	XXI. Warning messages
	Appendix A: SpartaDOS X system loader relocation rules
	Appendix B: MAE's directives not supported in ELSA
	Appendix C: MAE's bugs
	Appendix D: ELSA's source statistics

