
Everyone Likes Some Assembling (ELSA):
the native 65C816 assembler

An overview

(c) 2020 KMK/DLT

Version 0.9c

Preface

ELSA is a clone of the MAE assembler by John Harris. This was the assembler I
had used since around 1996, when I discovered it and switched to it from MAC/65.

I sometimes still use MAE, but as years were passing, MAE was becoming a bit
too limited to my needs. Since that assembler is apparently no longer developed, and
since its author, John Harris, has refused to publish its source code, I was forced to
start writing my own assembler. It of course has the flavour of MAE, the assembler I
was accustomed to. But I have not used any part of MAE's code: the code is entirely
my own, the ELSA assembler only mimics most of the MAE's syntax, diverging
whenever I thought I had a better idea.

Also, ELSA is only an assembler compiler. Unlike MAE, it does not contain an
editor or a disassembler/debugger. For that last, I am currently working on my own
disassembler for 65C816, and for the editor I still use MAE.

ELSA is entirely written in 65C816 native code and makes use of the RAM past
the first 64k: it stores the symbol table there, thus making it virtually unlimited. In the
base 64k the program occupies around 25k.

One important similarity between ELSA and MAE is that ELSA, like MAE, was
written entirely on Atari. First versions were written and compiled under MAE, later
versions compiled with themselves, still however being written in MAE's excellent
editor.

For years it had been my private program, not really intended for public release.
But it apparently has grown so that it can be shown to other people. So it will be with
the hope that it turns out to be useful to someone.

KMK/DLT
Warszawa, February-March 2020

Table of contents

I. Operation..3
II. Command line arguments...4
III. General assembler syntax..4
IV. Labels...5
V. Expressions...5
VI. Unary operators...6
VII. Binary operators...6
VIII. Directives..7
IX. MAE's directives not supported in ELSA...13
X. Pseudo-labels..14
XI. Pseudo-instructions...14
XII. Instruction aliases...22
XIII. Alternative syntax in some instructions..22
XIV. Divergences from the WDC-recommended syntax..24
XV. MAE's bugs..25

I. Operation

As said in the Preface, ELSA is MAE's clone, so first of all it is good to get
some acquaintance with that assembler. The MAE User's Manual you can find on the
Net will supply you with the basic information on this topic:

http://www.mixinc.net/atari/mae.htm
Unlike MAE (which stands for Macro-Assembler-Editor), ELSA is an assembler

compiler only, contains no editor nor debugger.
Also, unlike MAE, ELSA aborts the assembling on first error, emits a bell signal

(ASCII 253), and quits to DOS. This allows you to leave the computer alone doing a
larger assembly builds instead of being forced to watch the screen constantly for error
messages or miss them having been scrolled up out of the display.

Unlike MAE, which compiles from the memory to the memory or from memory
to an object file, ELSA compiles from the source file to the object file only. Therefore
it is good to have a fast hard drive as storage.

Other requirements are:

1) 65C816 CPU operating at least at 1.77 MHz;
2) 65C816 compatible OS ROM, like DracOS (also known as Rapidus OS);
3) SpartaDOS;

Recommended:

4) SpartaDOS X;
5) at least 64k of the 65C816 High RAM, also known as the linear memory (the

flat RAM past the address $00FFFF);
6) a 20 MHz CPU.

http://www.mixinc.net/atari/mae.htm

II. Command line arguments

The syntax is:

ELSA [options] source_file_name.ext [options]

The options are:

Option Function

/C Case-insensitive labels: with this option the labels "ADR" and "adr" are identical.

/Dlabel=value Assign "value" to the label named "label" and insert this label into the symbol
table before the first assembly pass. Example: /DSTART=$2000

/L Generate assembly listing during the second pass. The listing will appear on the
screen, being formatted for 80-column displays. This switch has a priority over .LS
and .LC directives possibly inserted into the source code (i.e. .LC will not be able
to switch off the listing if it was enabled with -L).

/Mtarget Define default target CPU. The available targets are: 6502, 65c02, 65sc02, 65c802
and 65c816. When no target is specified, 65C816 is assumed. How the targets are
defined and what are the effects of selecting a particular target CPU, it is explained
when the corresponding assembly directives are discussed. Example: /M65C802.

/Ofname.ext Define the object file name. This switch has a priority over .OUT directives placed
within the source code: then /O is specified, any .OUT will be ignored and a warn-
ing message will be printed on the screen. When the object file name is defined
neither in the command line nor in the source code, the object code will not be
saved anywhere. Remark: note that it is not very safe to manually type both the
source file name and the object file name each time a program needs to be as-
sembled; better define the object file in your source using the .OUT directive, leav-
ing the /O command line switch for the use inside BAT scripts and the like.

/Q Quiet assembly, i.e. suppress warnings.

/P Warn about branches crossing a page boundary.

/R After the second pass display the information on the usage of the labels.

/U Report all unreferenced internal addresses after the second pass.

/V Report all unused labels after the second pass. This is reported by default in the fi-
nal message as "n LABELS DEFINED (m NEVER USED)", adding the switch
just causes the unreferenced labels to be explicitly listed. Unlike /U, this lists all
unused labels regardless of their function, i.e. whether they are meaning addresses
or values or whatever.

Instead of the "/" sign, the minus sign may be used, e.g. -M65C802 is perfectly
valid.

III. General assembler syntax

As said above, ELSA is a clone of MAE. In the area of the syntax, MAE is in
turn generally following the style of MAC/65, so that switching from the latter to the

former makes no trouble. The MAE's oddity is that it only respects the first three
characters of the name of a directive, so for example writing in the source .WORD
or .WO makes no difference. ELSA keeps many of these quirks for (my) conveni-
ence, but the short forms are in fact explicit aliases for their longer equivalents.

IV. Labels

A label may be up to 240 characters long, which means that there is no practical
size limit. The label's first character must be a letter, apart from that the decimal di-
gits, the @ character, the dot (".") and the underscore character ("_") are allowed in
the body of a label. The question mark, for the reason explained below, is only al-
lowed as either the first or as the last character of a label (therefore such an expres-
sion as BOOT? = $09 is perfectly valid).

In the area of labels, the most notable feature of MAE is the system of local la-
bels marked with "?" character at the beginning. Such a label will serve as a local one
in the area between two consecutive global labels. To reference such a local label, just
prefix its name with the "?" character (e.g. LDA ?SIZE). When a reference to a local
label is required from the outside of its global scope, the respective global label
should be used followed by "?" and by the local label the reference is being made to
(e.g. LDA IOCB?ICAX1,X). ELSA follows this system as a simple and elegant solu-
tion of the problem of label locality.

Any other label is a global label (unless stated otherwise).
The directive .LOCAL namespace defines higher level of locality, not to be con-

fused with the aforementioned system modelled after MAE (this may be used without
using the .LOCAL keyword). All labels, no matter if "global" or "MAE-style local",
when defined between two .LOCAL directives, belong to the local namespace
defined by the first of them only. This allows strict separation of local namespaces
from the main program and from each other, so that even the same include files, de-
fining the same global labels, may be used multiple times in different parts of the pro-
gram.

An obvious example is an init segment, which gets overwritten after use: within
it you may use the same library procedures and system calls as within the rest of the
program, but you do not want to reference accidentally from within the main program
something which was only temporarily defined for the init segment.

When a reference between different namespaces is required, the label referenced
should be preceded with the name of its namespace and a colon (":", e.g. JMP
INIT0:START). The global namespace has no name, so when a reference to a global
label is required from within a local namespace, the label being referenced should be
preceded with a colon only (e.g. LDA :KBCODES).

References to a MAE-style local label defined within a local namespace from
the outside of that namespace are not allowed.

V. Expressions

Like MAE, ELSA does not pay attention to arithmetic operator precedence, the

expressions are evaluated straight from left to right, and there are no parentheses.
Some day I will have to fix this, probably.

The asterisk ("*"), as in most other assemblers, means the current value of the
PC. But, unlike in MAC/65, it is a read-only symbol and you cannot assign it a new
value; so the expression "*=*+value", commonly used in MAC/65 to reserve memory
space of the "value" length, will not work - you have to use the .DS directive instead.

VI. Unary operators

Expressions:

Operator Function

! Negate the result of the integer evaluation by applying XOR -1 (one's complement).
This operator is applied before the ones mentioned below: <, > and ^.

- Negate the result of the integer evaluation by applying (XOR -1) + 1 (two's comple-
ment). This operator is applied before the ones mentioned below: <, > and ^.

+ Do nothing.

< Extract the bits 0-7 of the evaluation's result.

> Extract the bits 8-15 of the evaluation's result.

^ Extract the bits 16-23 of the evaluation's result.

Addressing modes:

Operator Function

Force the immediate addressing mode (e.g. LDA #VALUE)

< Force the zero-page addressing mode (e.g. LDA <VALUE)

| Force the absolute (16-bit) addressing mode (e.g. LDA |VALUE)

! Same as the | (e.g. LDA !VALUE).

> Force the long absolute (24-bit) addressing mode (e.g. LDA >VALUE).

These latter ones will be applied first to arguments to mnemonics, then the as-
sembler will proceed normally with the expression evaluation. So STA !0 (address 0
with forced 16-bit addressing) will produce $8D $00 $00, and STA !!0 will produce
$8D $FF $FF (the first ! forces 16-bit addressing mode, the subsequent one negates
the result of the argument evaluation).

VII. Binary operators

The arithmetic operators +, -, *, /, % (modulo) work as expected. There are
slight differences between MAE and ELSA in the area of comparison operators:

MAE ELSA Function

= = Equal

<> Different

> > Greater

< < Lesser

(none) >= Greater or equal

(none) <= Lesser or equal

Also, comparing to MAE, there are novelties in the logical operators:

MAE ELSA Function

& & binary AND

| | binary OR

^ ^ binary XOR (EOR)

(none) && logical AND

(none) || logical OR

VIII. Directives

The directives are keywords which are steering the process of assembling. In
ELSA, as in MAC/65 and MAE, most of these keywords are preceded with a dot. It
makes them more visible in the source code and also facilitates its parsing.

The directives must be located past the column 0 of your source file, i.e. there
must be at least one space between them and the left margin. Only one directive is al-
lowed per program line, unless stated otherwise.

Symbols used in the table below:
x - expression; w - expression, word value; b - expression, byte value; lb - label

name. All these "expressions" must evaluate in the first assembly pass.

Directive Alias Synopsis Examples

[
...
]

Define a block of code to be used with the con-
ditional pseudo-instructions Rcc and Scc. If the
block contains no code or data directives, the as-
sembler will generate a warning.

 LDY #$00
 [
 LDA $2000,Y
 STA $3000,Y
 INY
]
 RNE

.6502 .02 Set 6502 as the current target. Implies .RB. The
target CPU is defined as a subset of 65C02, any
instruction that does not belong to that subset
will generate a warning.

 .6502

.65C02 .c02 Set 65C02 as the current target. Implies .RB.
The target CPU is defined as a subset of
65SC02, any instruction that does not belong to

 .65C02

that subset will generate a warning.

.65C802 .802 Set 65C802 as the current target. The target CPU
is practically the 65C816, just the instructions
related to 24-bit addressing (operational, but
pretty much useless on 65C802) will generate
warnings.

 .65C802

.65C816 .816
.65816

Set the 65C816 as the current target. This is the
default, unless overridden in the command line
or in the source code.

 .65C816

.65SC02 Set 65SC02 (slightly modified 65C02 produced
by Rockwell and WDC) as the current target.
Implies .RB. The target CPU is defined as a sub-
set of 65C802, any instruction that does not be-
long to that subset will generate a warning.
Rockwell's BBR/BBS instructions and such
(which are not continued in 65C802) are not
supported.

 .65SC02

.AB Accumulator Byte: tell the assembler, that the
current accumulator size is Byte. This directive
has effect only if the target CPU is 65C802 or
65C816. For other targets the assembler will ig-
nore the directive and generate a warning. Re-
lated: .AW, .IB, .IW, .RB, .RW

 .AB

.ALIGN w Align the current PC to the boundary specified
by the argument. The argument's value has to be
a power of two and be greater than a 0. A value
of 1 is allowed, too, but it obviously does noth-
ing.

 .ALIGN $0100

.AW Accumulator Word: tell the assembler, that the
current accumulator size is Word. This directive
has effect only if the target CPU is 65C802 or
65C816. For other targets the assembler will ig-
nore the directive and generate a warning. Re-
lated: .AB, .IB, .IW, .RB, .RW

 .AW

.BIN .BI Binary Include. Unlike in MAE, the contents of
the file is not interpreted in any way, it is just
verbatim inserted into the object code.
When the file about to be included is located on
a file system which does not provide reliable in-
formation on file's length (such as AtariDOS/
MyDOS file system), use .OPT F- before calling
this directive (and .OPT F+ afterwards). Related:
.INCLUDE

 .BIN PIC.BMP

.BYTE .BY Inject the given byte values to the output file.
The consecutive "bytes" separated with commas
can be: decimal numbers, hexadecimal numbers
preceded with the $ character, single ASCII
characters preceded with the apostrophe, labels,

 .BYTE 0,$FF,'A,"Hey"
 .BYTE <VAL,>VAL
 .BYTE SIZE*2+1
 .BYTE +$80,"HELLO"
 .BYTE -$20,"caps"

arithmetic expressions, or text strings included
in the double quotation marks. When the first
numeric value is preceded with the + or - sign,
this value will be added to or subtracted from,
respectively, the rest of the values generated by
this directive. Related: .CBYTE, .SBYTE

.CBYTE .CB As .BYTE, except that the last byte generated by
the single .CBYTE directive will be "inverted"
(i.e. EORed with $80).
Related: .BYTE, .SBYTE

 .CBYTE "LOAD"
 .CBYTE +$20,"CAPS"

.CODE Switch the PC to the code section. In practice, it
marks an end of the block which was started
with .ZP. Related: .ZP

 .ZP
XY .DS 2
 .CODE
 LDA XY

.DBYTE As .WORD, but with the inverted order of the
bytes (i.e. MSB first).
Related: .WORD, .TBYTE

 .DBYTE $07FF,13

.DC w b Define Constant-filled block. The consecutive
16-bit "w" number of bytes will be filled with
the 8-bit value of "b". Related: .DS

 .DC 345 $FF

.DS w Declare Storage. It reserves the "w" number of
bytes as uninitialized data array (as small as 1
byte). In other words, it does not generate code
or data, it just adds the given number to the cur-
rent PC during assembling, thus making an
empty "gap" in the memory. Related: .DC

 .DS 32

.ELSE .EL This inverts the result of the expression evalu-
ation made by the .IF directive.
Related: .IF, .ENDIF, .IFDEF, .IFNDEF

(see .IF)

.END Closes the object code file and ends the assem-
bling. Related: .ORG

 .END

.ENDIF *** This ends the conditional block started with .IF.
Related: .IF, .ELSE, .IFDEF, .IFNDEF

(see .IF)

.ENDR Marks the end of the block started with .REPT.
Related: .REPT

(see .REPT)

.ERROR Just like .PRINT, but after printing out the re-
quired text it also aborts the assembling with an
error message. Obviously it makes sense within
a conditional block only (.IF / .ENDIF). Related:
.PRINT

 .ERROR "LM=",LM

.FLOAT .FL Store the arguments, separated by commas, in
the Floating Point 6-byte BCD format for use
with the OS ROM's Floating Point package. This
directive accepts two types of arguments: FP
constants, which are just converted to the BCD,
and integer expressions, which are evaluated
normally, then the result is converted to the

 .FLOAT "3.14","1E+10"
 .FLOAT 256*3,-2+1

BCD format. An FP constant must be included
in double quotation marks; when they are miss-
ing, this means that the argument is an integer
expression to be evaluated first. The results
coming from the integer evaluator are inter-
preted as signed values (range -8388608 < 0 <
8388607), so e.g. .FLOAT -2+1 produces correct
"-1" in BCD, and not what the integer evaluator
would bring normally, i.e. 16777215.
Related: .WORD, .LONG

.HEX .HE Generate a series of hexadecimal numbers. It is
similar to .BYTE, but in the particular case of
hex number may be more handy, because does
not stipulate them to be preceded with the $ sign
and the separator is space. Related: .BYTE

 .HEX AE 19 00 44 FF

.IB Index registers Byte: tell the assembler, that the
current X and Y register size is Byte. This dir-
ective has effect only if the target CPU is
65C802 or 65C816. For other targets the assem-
bler will ignore the directive and generate a
warning. Related: .AB, .AW, .IW, .RB, .RW

 .IB

.IF x The beginning of the conditional block. If "x" is
evaluated as true, the lines immediately follow-
ing the .IF directive will be interpreted, or ig-
nored otherwise. The conditional blocks can be
nested up to 256 levels deep. When this limit is
exceeded, the assembler will generate an error
message.
Related: .ELSE, .ENDIF, .IFDEF, .IFNDEF

 .IF __M6502__=1
 .PRINT "NMOS"
 .ELSE
 .PRINT "CMOS"
 .ENDIF
 .IF AB&&BC
 ...

.IFDEF lb Returns TRUE if the label "lb" is defined, i.e.
already present in the symbol table. Related: .IF,
.ELSE, .ENDIF, .IFNDEF

 .IFDEF USE_CIO
 .INCLUDE CIO.S
 .ENDIF

.IFNDEF lb As above, just returns FALSE when the label 'x'
is defined. Related: .IF, .ELSE, .ENDIF, .IFDEF

 .IFNDEF RTCLOCK
RTCLOCK=18
 .ENDIF

.INCLUDE .IN Includes another source file. These directives
can be nested (i.e. the included file may contain
another .INCLUDE directives), just remember
that the stack space is not unlimited.
Related: .BIN

 .INCLUDE MATH.S

.IW Index registers Word: tell the assembler, that the
current X and Y register size is Word. This dir-
ective has effect only if the target CPU is
65C802 or 65C816. For other targets the assem-
bler will ignore the directive and generate a
warning. Related: .AB, .AW, .IB, .RB, .RW

 .IW

.LC Switch off ("clear") the assembly listing. Re-
lated: .LS, .LL

(see .LS)

.LL List just the following line. Related: .LC, .LS .LL
 STA 24*OFFSET+L,X

.LOCAL lb Define new local namespace named "lb". This
automatically ends the current local namespace
and switches to the new one. When only termin-
ating the local namespace and switching to the
global one is needed, the directive should get no
parameters. The "lb" label size is limited to 64
characters.

 .LOCAL INIT0
INIT ...
 .ORG $02E2
 .WORD INIT
 .LOCAL

.LONG .LO Stores long, 24-bit words in the object code, in
the usual order of bytes, i.e. LSB first.
Related: .WORD, .TBYTE

 .LONG $F1234,99999

.LS Switch on ("set") the assembly listing.
Related: .LC, .LL

 .LS
 .ORG $0600
START
 JMP $E477
 .END
 .LC

.LSB Stores in the memory the Least Significant
Bytes of the given series of long, 24-bit word
values. An equivalent of .BYTE <VALUE with
a bit less typing. Related: .BYTE, .MSB, .USB

 .LSB ADR1,ADR2

.MSB Stores in the memory the Middle Significant
Bytes of the given series of long, 24-bit word
values. An equivalent of .BYTE >VALUE with
a bit less typing. Related: .BYTE, .LSB, .USB

 .MSB ADR1,ADR2

.OPT Specify additional assembly options:
* H- suppress (or enable with H+) writing head-
ers to the object code. H+ is the default.
* F- use this when including binary files
with .BIN from a file system which does not
provide reliable information on the length of
files (such as AtariDOS file system). F+ is the
default.
* W- disable warnings. W+ is the default, how-
ever the command line switch /Q has a priority
here and with it the .OPT W+ will not enable
warnings anyway.

 .OPT H-,F-
 .OPT H+,F+

.ORG w .OR Specifies the address where (a portion of) the
object code has to be stored in the memory. The
assembler is able to generate up to 1024 separate
segments within one binary file. Related: .END

 .ORG $2000

.OUT .OU Specifies the name of the object code. This dir-
ective will get ignored, if the output file was
specified in the command line. When this file
name is not specified either way, the object code
will not be stored anywhere.

 .OUT TEST.COM

.PRINT .PR Prints the given text during the assembling. AS- .PRINT "PC:",*

CII strings must be included within double quo-
tation marks, multiple arguments must be separ-
ated with commas. When nothing is
given, .PRINT will just output an EOL charac-
ter. Related: .ERROR

.RB Tell the assembler, that the current size of re-
gisters AXY is Byte. This directive has effect
only if the target CPU is 65C802 or 65C816. For
other targets the assembler will ignore the dir-
ective and generate a warning.
Related: .AB, .AW, .IB, .IW, .RW

 .RB

.REPT w Marks the beginning of the block of lines in
your source file, which have to be repeated "w"
times during assembling. The end of that block
should be marked with .ENDR. Within the
block, the pseudo-label __REPT__ contains the
number of the current iteration, and the operator
when appended to a label, makes it unique for
each iteration. When "w" is zero, the pair REPT/
ENDR will do nothing, and the assembler will
generate a warning. The .REPT blocks cannot be
nested. Related: .ENDR

 LDA MATH
 .REPT 8
 ASL
 ROL MATH+1
 BCS SKIP#
 INC NULS
SKIP#
 .ENDR

.RS w Reserve space within a structure began
by .RSSET. The space will be of "w" bytes. This
is similar to .DS with the one exception that .DS
adds to the PC (thus reserving memory),
while .RS only adds to the internal counter of
the structure, just defining offsets within it. The
example shows how to define a structure DOT,
then reserve space in memory for 100 DOTs,
and how to reference it. Note that in this ex-
ample the label DOT is not really used, it only
begins the local area for the actual labels within
the structure. This is also incredibly useful when
defining offsets on the stack to be referenced
with the b,S and (b,S),Y addressing modes. Re-
lated: .RSSET

DOT .RSSET 0
?CX .RS 1
?CY .RS 1
?CZ .RS 1
?OP .RS 2
DSZ = __RSSIZE__

DOTS .DS DSZ*100

 LDX #offset_of_a_dot
 LDA DOTS+DOT?CX,X

.RSSET w Beginning of a structure. The "w" is the offset of
the structure's first element. Related: .RS

.RW Tell the assembler, that the current size of re-
gisters AXY is Word. This directive has effect
only if the target CPU is 65C802 or 65C816. For
other targets the assembler will ignore the dir-
ective and generate a warning.
Related: .AB, .AW, .IB, .IW, .RB

 .RW

.SBYTE .SB Like .BYTE, but understands the given bytes as
ASCII values, and converts them to Atari screen
codes before storing in the object code.
Related: .BYTE, .CBYTE

 .SBYTE "TIME:"
 .SBYTE +$60,"NAME"

SET lb = x Change the value of the label "lb" which was
already defined and has a value assigned. Note
no dot at the beginning of this keyword.

 SET zpc = $0100

.TBYTE Stores 24-bit long words in the memory in the
reverse order of bytes, i.e. MSB first. In other
words, it is to .LONG like .DBYTE to .WORD.
Related: .LONG

 .TBYTE $ABCDEF

.USB Stores in the memory the Upmost Significant
Bytes of the given series of long, 24-bit word
values. An equivalent of .BYTE ^VALUE with
less typing. Related: .BYTE, .LSB, .MSB

 .USB ADR1,ADR2

.WORD .WO Stores 16-bit words in the object code, in the
usual order of bytes (LSB first).
Related: .DBYTE, .LONG

 .WORD $E477,20133

.ZP [b] Switch the PC to the Zero Page section. This
keyword allows to declare zero page variables
anywhere in your source code. The first .ZP dir-
ective accepts an offset on the zero page as an
argument - this offset is the first address on the
zero page to be used in your program (otherwise
the default offset will be $00, rarely a desired
thing on Atari). From there you can declare your
zero page variables using the .DS directives. The
end of the declarations is marked with .CODE.
Later, when you want to declare more zero page
variables when writing your program, you do
not have to add them to the first .ZP block (al-
though it is of course allowed), but you may use
the .ZP directive again and declare more vari-
ables, again marking the end of this block
with .CODE, which will switch you back to the
code section. This way the variables may be de-
clared just before the subroutines which use
them, and you do not have to trouble yourself
with assigning the actual addresses, because the
use of .ZP, .DS and .CODE directives will auto-
matically perform sequential allocation. When
the size of the data being declared on the zero
page exceeds the limit (i.e. the "zero page PC"
spans the $FF address within the "zero page sec-
tion"), the assembler will generate an error mes-
sage. Related: .CODE

 .ORG $0600
START JSR GETA
 JMP LIFE

 .ZP $80
C1 .DS 1
C2 .DS 2

 .CODE
GETA LDA $D20A
 STA C1
 LDA $D20A
 STA C2
 RTS

 .ZP
PTR .DS 2

 .CODE
LIFE LDA C1
 STA PTR
 LDA C2
 STA PTR+1
 JMP (PTR)

IX. MAE's directives not supported in ELSA

Directive Synopsis

.24 In MAE this enables 24-bit address calculations. In ELSA all expressions are evalu-
ated as 24-bit values, so this directive has no purpose. It causes no error, however.

.EN This is only supported as an alias for .END, and not as an alias for .ENDIF.

.MC Move Code. This can be worked around using .OPT to temporarily suppress generat-
ing headers.

.MD

.ME

.MG

These are: Macro Definition, Macro End and Macro Global. They are not supported
at the moment because ELSA does not support macros (yet).

X. Pseudo-labels

Pseudo-labels are keywords with a value, which can be used in arithmetic ex-
pressions just like normal labels. To differentiate a named pseudo-label from other la-
bels, ELSA marks them by putting two underscore characters (__) before and after
the label's name (examples below).

The pseudo-labels usually carry numeric values signalizing currently selected
assembling settings, just as register sizes and such things. Therefore they are particu-
larly useful in conditional blocks started with .IF.

Label's name Synopsis

* Current value of the Program Counter within the program being compiled. Note
that the assembler maintains more than one Program Counter, e.g. there are separ-
ate Program Counters for the .ZP segment and for the .CODE segment.

__ASIZE__ Current Accumulator size in bytes, as selected by the directives: .AB, .AW, .RB
and .RW.

__DATE__ Current date, day, month, year, stored as a 24-bit word. E.g. 13 February 2020 is
represented as $14020d in the usual little-endian byte order: $0d, $02, $14. If the
computer is not running SpartaDOS X, for this function to work you have to in-
stall a SpartaDOS-compatible "Z:" device in the system.

__ISIZE__ Current size of X and Y register in bytes, as selected by the respective
directives: .IB, .IW, .RB and .RW.

__M6502__ This has value of 1, if the currently selected target CPU is 6502, and 0 otherwise.

__M65C02__ 1, if the currently selected target CPU is 65C02, and 0 otherwise.

__M65SC02__ 1, if the currently selected target CPU is 65SC02, and 0 otherwise.

__M65C802__ 1, if the currently selected target CPU is 65C802, and 0 otherwise. Alias:
__M65802__

__M65C816__ 1, if the currently selected target CPU is 65C816, and 0 otherwise. Alias:
__M65816__

__REPT__ Current iteration within the .REPT/.ENDR block.

__RSSIZE__ Current offset of the structure defined by the directives .RSSET and .RS.

__TIME__ Current time of day, stored as a 24-bit word. 24-hour clock is used, so e.g.
19:11:05 will be represented as $050b13, i.e. $13, $0b, $05 in the little endian
byte order. If the computer is not running SpartaDOS X, for this function to work
you have to install a SpartaDOS-compatible "Z:" device in the system.

XI. Pseudo-instructions

A pseudo-instruction (otherwise known as a macro-instruction) is a kind of a
hard-coded macro: the assembler presents it under a single mnemonic, but during the
assembling this mnemonic is expanded into a series of actual CPU instructions.

The general rules for a pseudo-instruction in ELSA are these:
1) a pseudo-instruction has to follow the syntax of a real instruction, i.e. only the

otherwise existing addressing modes are allowed;
2) a pseudo-instruction must not generate confusing side effects, e.g. so that one

which claims to modify the memory also modifies the accumulator and flags, without
a warning.

ELSA implements these:

Syntax Synopsis Expands to

ADD ... Add without carry. The same addressing modes are
available as for the ADC, this pseudo-instruction is
just 1 byte longer and takes 2 cycles more. Counter-
part: SUB.

 CLC
 ADC ...

ASR Arithmetical Shift Right. As LSR, but the highest or-
der bit (= sign bit) of the Accumulator is preserved.
Implied addressing only. 3 and 4 cycles for 8-bit Ac-
cumulator, or 4 bytes and 5 cycles for a 16-bit one.

 CMP #$80
 ROR
or:
 CMP #$8000
 ROR

B2H Binary To Hex: convert the lowest nibble of the accu-
mulator into the corresponding hex digit, and store
the digit in the lowest byte of the Accumulator. If
other nibbles of the Accumulator (8-bit or 16-bit in
respective modes) contain anything but zeros, this in-
struction may yield undefined results. 6 bytes, 8
cycles for 8-bit Accumulator, 8 and 10 respectively
for 16-bit Acc.

 CMP #$0A
 SED
 ADC #$30
 CLD
or:
 CMP #$000A
 SED
 ADC #$0030
 CLD

BSL address Branch to Subroutine Long: a position-independent
equivalent of JSR, with the range of a 32k in either
direction. 6 bytes, 10 clock cycles.

 PER ret-1
 BRL address
ret

BSR address As above, just the branch is short: the range is 128 up
or down. 5 bytes, 9 clock cycles (or 10, when the
branch has to cross a page boundary).

 PER ret-1
 BRA address
ret

DEW address
DEW address,X

Decrement Word. The Accumulator gets clobbered in
the process and NZ flags are left inconsistent, so the
assembler will throw warnings because of that. 8 to
11 bytes, zero page min. 11, max. 15 cycles (17 when
index is crossing page boundary), absolute min. 13,
max. 18 (20 when index is crossing page boundary).
When the target CPU is 65C802 or 65C816 and the
currently selected Accumulator and Memory size is
16 bits (M=0), DEW is compiled to a single DEC in-

 LDA address...
 BNE skip
 DEC address+1...
skip
 DEC address...
or:
 DEC address...

struction (7 cycles for the zp, 8 for the absolute ad-
dressing mode), which leaves the NZ flags both valid
afterwards.

DWA address
DWA address,X

Decrement Word using Accumulator. Like DEW, but
makes explicit the intermediate use of the Accumu-
lator (hence no warning about it being clobbered).
Still, the Accumulator is in undefined state afterwards
and so are the NZ flags, which only reflect the state of
the LSB of the word being decremented. 8 to 11
bytes, zero page min. 11, max. 15 cycles (17 when in-
dex is crossing page boundary), absolute min. 13,
max. 18 (20 when index is crossing page boundary).
When the target CPU is 65C802 or 65C816 and the
currently selected Accumulator and Memory size is
16 bits (M=0), DWA is compiled to the LDA/DEC/
STA series of instructions (10 cycles for the zp, 12 for
the absolute addressing mode), which leaves the NZ
flags both valid afterwards, and the result of the
decrementation in the Accumulator.

 LDA address...
 BNE skip
 DEC address+1...
skip
 DEC address...
or:
 LDA address...
 DEC
 STA address...

Ecc Exit (= return from) subroutine if the condition "cc" is
met. 3 bytes, 8 cycles taken, 3 cycles not taken (or 4,
if the pseudo-instruction components cross a page
boundary). This pseudo-instruction is convenient
when things are about terminating a subroutine pre-
maturely, but one should remember that using a
branch to nearest RTS instead of Ecc may produce
better code (i.e. saves one byte, although usually
takes one or two cycles more).

 Bcc skip
 RTS
skip

ECC Exit (= return from) subroutine if Carry Clear. BCS skip
 RTS
skip

ECS Exit subroutine if Carry Set. BCC skip
 RTS
skip

EEQ Exit subroutine if EQual. BNE skip
 RTS
skip

EGE Exit subroutine if Greater or Equal. Same as ECS. BCC skip
 RTS
skip

ELT Exit subroutine if Lesser Than. Same as ECC. BCS skip
 RTS
skip

EMI Exit subroutine if MInus. BPL skip
 RTS
skip

ENE Exit subroutine if Not Equal. BEQ skip
 RTS

skip

EPL Exit subroutine if PLus. BMI skip
 RTS
skip

EVC Exit subroutine if V flag clear. BVS skip
 RTS
skip

EVS Exit subroutine if V flag set. BVC skip
 RTS
skip

INW address
INW address,X

INcrement Word. Like an INC address, but incre-
ments a word located at address and address+1.
When the address is on the zero page, occupies 6
bytes and takes 8 to 12 cycles; when outside the zero
page, 8 bytes and 9 to 14 cycles. The N flag is not in a
consistent state afterwards, Z is.
When the target CPU is 65C802 or 65C816 and the
currently selected Accumulator and Memory size is
16 bits (M=0), INW is compiled to a single INC in-
struction, and then the NZ flags are both valid after-
wards.

 INC address...
 BNE skip
 INC address...+1
skip
or:
 INC address...

Jcc address Jump if the condition "cc" is met. It is an absolute
version of conditional branches Bcc with identical
meaning, but the jump range of 64k instead of 256
bytes. 5 bytes, 5 cycles taken, 3 cycles not taken (or
4, when the instruction components cross a page
boundary).

 Bcc skip
 JMP address
skip

JCC address Jump if Carry Clear. BCS skip
 JMP address
skip

JCS address Jump if Carry Set. As above, with the opposite condi-
tion.

 BCC skip
 JMP address
skip

JEQ Jump if EQual. BNE skip
 JMP address
skip

JGE Jump if Greater or Equal. Same as JCS. BCC skip
 JMP address
skip

JLT Jump if Lesser Than. Same as JCC. BCS skip
 JMP address
skip

JMI Jump if MInus. BPL skip
 JMP address
skip

JNE Jump if Not Equal. BEQ skip
 JMP address

skip

JPL Jump if PLus. BMI skip
 JMP address
skip

JSL [abs]
JSR [abs]

Jump to Subroutine Long, indirect. Like JSR (abs),
just using a long pointer (located at address abs in
segment 0), therefore requiring RTL to return. Only
available for 65C802 and 65C816 targets. Note that
the pointer abs must be located in segment 0. 7 bytes,
15 cycles.

 PHK
 PEA ret-1
 JML [address]
ret

JSR (abs) Jump to SubRoutine, indirect. Like JMP (abs), just
pushing the return address onto the stack. Only avail-
able for 65C802 and 65C816. Note that the pointer
abs must be located in segment 0. 6 bytes, 11 cycles.

 PEA ret-1
 JMP (address)
ret

JVC Jump if V flag Clear. BVS skip
 JMP address
skip

JVS Jump if V flag Set. BVC skip
 JMP address
skip

PHR Push Registers. Counterpart: PLR. The size and exe-
cution time depends on the target CPU and current
circumstances:
6502: 5 bytes and 13 cycles;
65C02: 3 bytes and 9 cycles
65C802/816: 3 bytes and
* 9 cycles for all registers byte-sized;
* 10 cycles for word-sized accumulator;
* 11 cycles for word-sized index registers;
* 12 cycles for all registers word-sized.
Note that on 6502 there is an unpleasant side effect:
the Accumulator content gets lost - after the PHR's
execution A contains a copy of the Y register. The as-
sembler will therefore generate a warning in this
case.

 PHA
 PHX
 PHY
or (for 6502 target):
 PHA
 TXA
 PHA
 TYA
 PHA

PLR Pull Registers. The reverse of the PHR. The size and
execution time depends on the target CPU and current
circumstances:
6502: 5 bytes and 16 cycles;
65C02: 3 bytes and 12 cycles
65C802/816: 3 bytes and
* 12 cycles for all registers byte-sized;
* 13 cycles for word-sized accumulator;
* 14 cycles for word-sized index registers;
* 15 cycles for all registers word-sized.

 PLY
 PLX
 PLA
or (for 6502 target):
 PLA
 TAY
 PLA
 TAX
 PLA

Rcc Repeat previous instructions if condition "cc" is met.
This pseudo-instruction comes in two flavours. In its
simple form it just follows one instruction which is to

loop ...
 Bcc loop
or:

be repeated, in this manner:
 LDA VCOUNT
 RNE
In its more complex form, an entire block of instruc-
tions can be repeated. The block should be defined
using the directives [and], in this manner:
 LDY #$00
 [
 LDA $2000,Y
 STA $3000,Y
 INY
]
 RNE
When the branch is in 8-bit signed range, this pseudo-
instruction is compiled as a Bcc, or as a Jcc other-
wise. Therefore the resulting object code may accord-
ingly vary in code size and execution time.

loop ...
 Jcc loop

RCC Repeat instructions if Carry Clear. loop ...
 BCC loop
or:
loop ...
 BCS skip
 JMP loop
skip

RCS Repeat instructions if Carry Set. loop ...
 BCS loop
or:
loop ...
 BCC skip
 JMP loop
skip

REQ Repeat instructions if EQual. loop ...
 BEQ loop
or:
loop ...
 BNE skip
 JMP loop
skip

RGE Repeat instructions if Greater or Equal. Same as RCS. loop ...
 BCS loop
or:
loop ...
 BCC skip
 JMP loop
skip

RLA Rotate bits Left in Accumulator. Counterpart: RRA.
Unlike in ROL, the highest bit is copied not only to
the C flag, but also to the bit 0. Timings are identical
as in ASR.

 CMP #$80
 ROL
or:
 CMP #$8000
 ROL

RLT Repeat instructions if Lesser Than. Same as RCC. loop ...
 BCC loop
or:
loop ...
 BCS skip
 JMP loop
skip

RMI Repeat instructions if MInus. loop ...
 BMI loop
or:
loop ...
 BPL skip
 JMP loop
skip

RNE Repeat instructions if Not Equal. loop ...
 BNE loop
or:
loop ...
 BEQ skip
 JMP loop
skip

RPL Repeat instructions if PLus. loop ...
 BPL loop
or:
loop ...
 BMI skip
 JMP loop
skip

RRA Rotate bits Right in Accumulator. Counterpart: RLA.
Unlike in ROR, bit 0 is copied straight into the
highest bit. 5 to 6 bytes, 5 to 7 cycles.

 LSR
 BCC skip
 ORA #$80
skip
or:
 LSR
 BCC skip
 ORA #$8000
skip

RVC Repeat instructions if V flag clear. loop ...
 BVC loop
or:
loop ...
 BVS skip
 JMP loop
skip

RVS Repeat instructions if V flag set. loop ...
 BVS loop
or:
loop ...
 BVC skip

 JMP loop
skip

Scc Skip following instruction if condition "cc" is met.
This pseudo-instruction precedes the instruction
which is to be skipped, in this manner:
 INC ADR
 SNE
 INC ADR+1
In the more complex form the [and] may be used to
define the block to skip:
 LDA $2000
 SEQ
 [
 LDY #$00
 [
 LDA $2000,Y
 STA $3000,Y
 INY
]
 RNE
]
Remark: in the current implementation no global la-
bels may be defined within the scope of this pseudo-
instruction. For example, the following:
 SNE
RESET JMP $E477
 ...
will cause the assembler to throw an error. Also, the
Scc pseudo-instruction branch range is 127 bytes
only. When the defined block exceeds this range, the
assembler will throw an error.

 Bcc skip
 ...
skip

SCC Skip instruction if Carry Clear. BCC skip
 ...
skip

SCS Skip instruction if Carry Set. BCS skip
 ...
skip

SEQ Skip instruction if EQual. BEQ skip
 ...
skip

SGE Skip instruction if Greater or Equal. Same as SCS. BCS skip
 ...
skip

SLT Skip instruction if Lesser Than. Same as SCC. BCC skip
 ...
skip

SMI Skip instruction if MInus. BMI skip
 ...
skip

SNE Skip instruction if Not Equal. BNE skip
 ...
skip

SPL Skip instruction if PLus. BPL skip
 ...
skip

SVC Skip instruction if V flag Clear. BVC skip
 ...
skip

SVS Skip instruction if V flag Set. BVS skip
 ...
skip

SUB Subtract without carry. The same addressing modes
are available as for the SBC, this pseudo-instruction
is just 1 byte longer and takes 2 cycles more. Coun-
terpart: ADD.

 SEC
 SBC ...

XII. Instruction aliases

 An alias is just an alternative mnemonic for an instruction. ELSA implements a
handful of these, mostly following the CPU producer's advice.

Syntax Synopsis Equivalent to

BGE address Branch if Greater or Equal. BCS address

BLT address Branch if Lesser Than. BCC address

CLR address
CLR address,X

Clear the specified memory location. STZ address
 STZ address,X

CPA ... Compare with the Accumulator. CMP ...

DEA Decrement Accumulator. DEC

HLT Halt the processor. STP

INA Increment Accumulator. INC

LSL ... Logical Shift Left ASL ...

PEI (address) Push Effective address, Indirect (move word from ZP to stack) PEA (address)

PER address Push Effective address, Relative PEA address

SWA SWap Accumulator halves. XBA

TAD Transfer Accumulator to Direct page register. TCD

TAS Transfer Accumulator to Stack pointer. TCS

TDA Transfer Direct page register to Accumulator. TDC

TSA Transfer Stack pointer to Accumulator. TSC

XIII. Alternative syntax in some instructions

Some instructions have been given alternative syntax as if they had additional
addressing modes, which they obviously do not have; instead, it is just the way ELSA
is allowing the programmer either to omit mandatory argument(s), when the value of
the argument(s) is implied, or to control whether to add the argument or not for spe-
cial purposes.

So, first of all, you can omit the arguments for MVN/MVP, if both arguments
are to be zeros:

Basic syntax Alternative syntax

MVN 0,0 MVN

MVP 0,0 MVP

This does not change the code being generated, i.e. the mnemonic MVN without
its arguments will generate the same code as MVN 0,0.

Another case are the instructions BRK and WDM. Both are in fact two-byte, but
the basic syntax does not allow to specify the immediate argument. So ELSA allows
this:

Basic syntax Alternative syntax

BRK BRK #$xx

WDM WDM #$xx

This does change the code generated. For example, BRK alone will cause one
byte (of value of $00) to be generated to the object file, but f.e. BRK #$80 will gener-
ate two bytes: $00 $80.

The next case is BIT absolute:

Basic syntax Alternative syntax

BIT abs BIT

The alternative syntax will cause just one byte ($2C) to be generated to the ob-
ject code. As the instruction in fact occupies 3 bytes, this may be used to mask out
any following two-byte instruction, effectively skipping it. This effect was tradition-
ally accomplished by putting .BYTE $2C into the instruction stream, ELSA just
makes it more explicit.

Basic syntax Alternative syntax

BCC label BCC

BCS label BCS

BEQ label BEQ

BNE label BNE

Basic syntax Alternative syntax

BPL label BPL

BMI label BMI

BVC label BVC

BVS label BVS

The purpose of these is the similar as above, i.e. masking out any following one-
byte instruction. To accomplish that you just need to recognize the current condition,
then use the branch for the exactly opposite condition to use it to skip something. For
example:

CLEAR CLC
BCS

SET SEC
ROR FLAG

Calling the location marked with the label CLEAR will clear the C flag, then the
following BCS branch will get ignored together with the SEC instruction which will
get interpreted as its argument - and this effectively makes it skipped.

The BIT zp instruction is traditionally used for this purpose (by inserting .BYTE
$24 into the instruction stream), but using a branch takes one cycle less and, unlike
BIT, does not generate spare memory accesses.

XIV. Divergences from the WDC-recommended syntax

The main divergence from the syntax and mnemonic names, which are recom-
mended by the WDC, concerns the PEA instruction. The WDC syntax is this:

PEA $xxxx – PEA absolute
PEI ($xx) – PEA direct page indirect
PER $xxxx – PEA relative

But this "PEA absolute" simply pushes its 16-bit argument value onto the stack,
so you could think that naming it (the argument) "absolute effective address", espe-
cially in a machine where effective absolute addresses are 24-bit, is quite an over-
statement. Sure, we write JMP $xxxx, and speak of the instruction as being in abso-
lute addressing mode, but JMP actually uses its argument as an address to change the
current location of the PC within the code. If we were thinking of JMP as of a 16-bit
move (which it technically is), we could symbolically write it down as MOVE
#$xxxx,PC – and yes, in this context, with the hash.

So, ELSA (and some other assemblers) are treating the first instance of PEA as
being in immediate mode. Therefore the syntax is as follows:

ELSA syntax WDC syntax

PEA #$xxxx PEA $xxxx

PEA ($xx) PEI ($xx)

PEA $xxxx PER $xxxx

As hinted in the previous section, you can still use PEI ($xx) and PER $xxxx be-
sides PEA ($xx) and PEA $xxxx, respectively.

XV. MAE's bugs

There are several known bugs in MAE's compiler, here is how ELSA will be-
have in the same circumstances:

Code Problem MAE's behaviour ELSA's behaviour

SOMELONGLABEL012 = 1 Label longer than 15
characters.

Likely crash. Labels up to 240
characters are al-
lowed.

LDA ($1234),Y No such addressing
mode.

Silently accepted as
LDA ($34),Y

Accepted with a
warning as LDA
($34),Y

LDX $800000 No such addressing
mode.

Silently accepted as
LDX $00

Error, improper ad-
dressing mode.

LDA #$<1234 Nonsense syntax. Silently accepted as
LDA #$01

Error, bad constant.

AA = BB
BB = CC
CC = 1
 .ORG $0600
 LDA AA

AA undefined during
second pass.

Silently accepted,
LDA AA compiled as
LDA 32768

Error, undefined la-
bel.

.LONG 0*2 None apparent. Compiled as .LONG
$2A0000

Compiled as .LONG
$000000

.WORD -256 None apparent. Compiled as .WORD
$FE00 (= -512)

Compiled as .WORD
$FF00

