
Everyone Likes Some Assembling (ELSA):
the native 65C816 assembler

An overview

(c) 2020-2021 KMK/DLT

Version 0.95

Preface

ELSA is a clone of the MAE assembler by John Harris. This was the assembler I
had used since around 1996, when I discovered it and switched to it from MAC/65.

I sometimes still use MAE, but as years were passing, MAE was becoming a bit
too limited to my needs. Since that assembler is apparently no longer developed, and
since its author, John Harris, has refused to publish its source code, I was forced to
start writing my own assembler. It of course has the flavour of MAE, the assembler I
was accustomed to. But I have not used any part of MAE's code: the code is entirely
my own, the ELSA assembler only mimics most of the MAE's syntax, diverging
whenever I thought I had a better idea.

Also, ELSA is only an assembler compiler. Unlike MAE, it does not contain an
editor or a disassembler/debugger. For that last, I am currently working on my own
disassembler for 65C816, and for the editor I still use MAE.

ELSA is entirely written in 65C816 native code and makes use of the RAM past
the first 64k: it stores the symbol table there, thus making it virtually unlimited. In the
base 64k the program occupies around 25k.

One important similarity between ELSA and MAE is that ELSA, like MAE, was
written entirely on Atari. First versions were written and compiled under MAE, later
versions compiled with themselves, still however being written in MAE's excellent
editor.

For years it had been my private program, not really intended for public release.
But it apparently has grown so that it can be shown to other people. So it will be with
the hope that it turns out to be useful to someone.

KMK/DLT
Warszawa, 2020-2021

Table of contents

I. Operation..4
II. Command line arguments...5
III. General assembler syntax..5
IV. Labels...6

Label name..6
General syntax...6
Local labels, MAE-style..6
Local namespaces..6
Definition order...7

V. Expressions...7
Value types...8

VI. Constants...8
VII. Unary operators..8
VIII. Binary operators..9
IX. Directives...10

Target CPU control..11
Conditionals and general assembly control...12
Repetitions...13
Fixed data definition control...13
Code generation control..14
Memory allocation control..15
Label control..16
Input/output control...16
Listing control...17
SpartaDOS X support..18

X. Pseudo-labels..19
XI. Pseudo-instructions...20
XII. Instruction aliases...27
XIII. Alternative syntax in some instructions..28
XIV. Divergences from the WDC-recommended syntax..30
XV. Declaring zero-page locations..30
XVI. Sections DATA and BSS..32

BSS section..32
BSS PC..33
BSS section in .REL blocks...34
DATA section...34
DATA section in .REL blocks..34
Combining DATA and BSS sections...35
DATA/BSS quirks..35

XVII. Defining structures in the memory and on the stack...35
XVIII. XREFs and XDEFs..39

XREFs...39
XDEFs...40

XIX. Starting relocatable programs...40
Appendix A: SpartaDOS X system loader relocation rules...41
Appendix B: MAE's directives not supported in ELSA..42
Appendix C: MAE's bugs..42
Appendix D: ELSA's source statistics...42

I. Operation

As said in the Preface, ELSA is MAE's clone, so first of all it is good to get some
acquaintance with that assembler. The MAE User's Manual you can find on the Net
will supply you with the basic information on this topic:

http://www.mixinc.net/atari/mae.htm
Unlike MAE (which stands for Macro-Assembler-Editor), ELSA is an assembler

compiler only, contains no editor nor debugger.
Also, unlike MAE, ELSA aborts the assembling on first error, emits a bell signal

(ASCII 253), and quits to DOS. This allows you to leave the computer alone doing a
larger assembly builds instead of being forced to watch the screen constantly for error
messages or miss them having been scrolled up out of the display.

Unlike MAE, which compiles from the memory to the memory or from memory to
an object file, ELSA compiles from the source file to the object file only. Therefore it
is good to have a fast hard drive as storage.

Other requirements are:

1) 65C816 CPU operating at least at 1.77 MHz;
2) 65C816 compatible OS ROM, like DracOS (also known as Rapidus OS);
3) a DOS with OSS CLI, preferably SpartaDOS.

Recommended:

4) SpartaDOS X;
5) at least 64k of the 65C816 High RAM, also known as the linear memory (the

flat RAM past the address $00FFFF);
6) a 20 MHz CPU.

Limitations:

a) Maximum source line length: 255 characters
b) Maximum length of a label: 240 characters
c) Maximum global line count: 4294967296 (3 months of assembling)
d) Maximum line count per file: 16777216 (8-9 hours of assembling)

http://www.mixinc.net/atari/mae.htm

II. Command line arguments

The syntax is:

ELSA [options] source_file_name.ext [options]

The options are:

Switch Function

/C Case-insensitive labels: with this option the labels "ADR" and "adr" are identical.

/Dlabel=value Assign "value" to the label named "label" and insert this label into the symbol
table before the first assembly pass. Example: /DSTART=$2000

/L Generate assembly listing during the second pass. The listing will appear on the
screen, being formatted for 80-column displays. This switch has a priority over
.LS and .LC directives possibly inserted into the source code (i.e. .LC will not be
able to switch off the listing if it was enabled with -L).

/Mtarget Define default target CPU. The available targets are: 6502, 65c02, 65sc02, 65c802
and 65c816. When no target is specified, 65C816 is assumed. How the targets are
defined and what are the effects of selecting a particular target CPU, it is explained
when the corresponding assembly directives are discussed. Example: /M65C802.

/Ofname.ext Define the object file name. This switch has a priority over .OUT directives placed
within the source code: then /O is specified, any .OUT will be ignored and a
warning message will be printed on the screen. When the object file name is
defined neither in the command line nor in the source code, the object code will
not be saved anywhere. Remark: note that it is not very safe to manually type both
the source file name and the object file name each time a program needs to be
assembled; better define the object file in your source using the .OUT directive,
leaving the /O command line switch for the use inside BAT scripts and the like.

/Q Quiet assembly, i.e. suppress warnings.

/P Warn about branches crossing a page boundary.

/U Report all unreferenced internal addresses after the second pass.

/V Report all unused labels after the second pass. This is reported by default in the
final message as "n LABELS DEFINED (m NEVER USED)", adding the switch
just causes the unreferenced labels to be explicitly listed. Unlike /U, this lists all
unused labels regardless of their function, i.e. whether they are meaning addresses
or values or whatever.

Instead of the "/" sign, the minus sign may be used, e.g. -M65C802 is perfectly
valid.

III. General assembler syntax

As said above, ELSA is a clone of MAE. In the area of the syntax, MAE is in turn
generally following the style of MAC/65, so that switching from the latter to the
former makes no trouble. The MAE's oddity is that it only respects the first three

characters of the name of a directive, so for example writing in the source .WORD
or .WO makes no difference. ELSA keeps many of these quirks for (my)
convenience, but the short forms are in fact explicit aliases for their longer
equivalents.

IV. Labels

Label name

A label may be up to 240 characters long, which means that there is no practical
size limit. The label's first character must be a letter, apart from that the decimal
digits, the @ character, the dot (".") and the underscore character ("_") are allowed in
the body of a label. The question mark, for the reason explained below, is only
allowed as either the first or as the last character of a label (therefore such an
expression as BOOT? = $09 is perfectly valid).

All label names beginning with double underscore character ("__") are reserved
and should not be used in programs because of possible conflicts with pseudolabels
(explained somewhat below) and labels declared by the assembler for internal
purposes.

Label names are case-sensitive by default ("FOO" is different than "foo" etc.), if
you want case insensitive searches, please specify /C in the command line.

General syntax

A label to be defined must start in the 0 (i.e. the leftmost) column of the text. Its
name may be terminated with a colon (":"), this character, when found at the end of a
label during its definition, is skipped.

The percent-sign ("%") appended at the end of a label being declared is a special
declarator: that label will be exported as an externally accessible symbol (XDEF).
Otherwise the use of that sign in labels is not allowed.

Local labels, MAE-style

In the area of labels, the most notable feature of ELSA's predecessor, MAE, is the
system of local labels marked with "?" character at the beginning. Such a label will
serve as a local one in the area between two consecutive global labels. To reference
such a local label, just prefix its name with the "?" character (e.g. LDA ?SIZE). When
a reference to a local label is required from the outside of its global scope, the
respective global label should be used followed by "?" and by the local label the
reference is being made to (e.g. LDA IOCB?ICAX1,X). ELSA follows this system as
a simple and elegant solution of the problem of label locality.

Any other label is a global label (unless stated otherwise).

Local namespaces

The directive .LOCAL namespace defines higher level of locality, not to be
confused with the aforementioned system modelled after MAE (this may be used
without using the .LOCAL keyword). All labels, no matter if "global" or "MAE-style
local", when defined between two .LOCAL directives, belong to the local namespace
defined by the first of them only. This allows strict separation of local namespaces
from the main program and from each other, so that even the same include files,
defining the same global labels, may be used multiple times in different parts of the
program.

An obvious example is an init segment, which gets overwritten after use: within it
you may use the same library procedures and system calls as within the rest of the
program, but you do not want to reference accidentally from within the main program
something which was only temporarily defined for the init segment.

When a reference between different namespaces is required, the label referenced
should be preceded with the name of its namespace and a colon (":", e.g. JMP
INIT0:START). The global namespace has no name, so when a reference to a global
label is required from within a local namespace, the label being referenced should be
preceded with a colon only (e.g. LDA :KBCODES).

References to a MAE-style local label defined within a local namespace from the
outside of that namespace are not allowed.

Definition order

ELSA is a two-pass assembler, so it is best to define a label before its first use
whenever possible: this is especially important in more complex arithmetic
expressions, where all components must be defined during second assembly pass, or
an error will occur. Labels for addresses may be defined after the reference, but when
the address is on zero page, using it before definition will cause phasing error to
occur during second pass. To avoid that, while referencing such a label, use the unary
operator < (e.g. LDA <LABEL) to tell the assembler that the label to be defined will
reference a zero-page location and an 8-bit address may be used.

V. Expressions

Like MAE, ELSA does not pay attention to arithmetic operator precedence, the
expressions are evaluated straight from left to right, and there are no parentheses.
Some day I will have to fix this, probably. The results coming from the integer
evaluator are 32-bit unsigned integers. Whenever the result does not fit on 32 bits, it
gets cut down to this size and a warning is generated.

The equal sign ("=") placed after a label means that the value of the following
expression will be assigned to the label. Otherwise, when no equal sign follows, the
label will be assigned the current value of the PC.

The asterisk ("*"), as in most other assemblers, means the current value of the PC.
But, unlike in MAC/65, it is a read-only symbol and you cannot assign it a new
value; so the expression "*=*+value", commonly used in MAC/65 to reserve memory
space of the "value" length, will not work - you have to use the .DS directive instead.

Value types

ELSA generally knows two types of values: addresses and values. The difference
between them is mostly of internal significance only, and the conversions most of the
time occur automatically. However, if an arithmetic operation tries to combine values
with addresses or addresses with addresses in a suspicious way, the result will be of
the value type and the assembler will generate a warning. The types can also be
enforced by the programmer, whenever the automatic conversions do not yield
satisfactory results: this may be done using the cast operators (explained further on).

VI. Constants

Prefix Function

(none) Decimal constant. Example: LDA 32000

$ Hexadecimal constant: LDA $7D00

% Binary constant: LDA %0111110100000000

' Character constant: LDA #'A

"..." Character string or floating point constant: .BYTE "HELLO!"

Note that an ASCII constant consisting of a single character is marked by a single
apostrophe situated in front of it. This also applies to directives such as .BYTE, thus

 .BYTE 'H,'E,'L,'L,'O,'!

is a perfectly valid equivalent to the example shown in the table.

VII. Unary operators

Operators which can be applied to individual operands in expression:

Operator Function

+ Do nothing.

- Arithmetic negation: applies (XOR -1) + 1 (two's complement) to what follows.

! Bitwise negation: applies XOR -1 (one's complement, „flip bits”) to what follows.

Operators which are applied to the result of entire expression after its evaluation:

Operator Function

< Extract the bits 0-7 of the given value: <$12345678 is $78.

> Extract the bits 8-15 of the given value: >$12345678 is $56.

^ Extract the bits 16-23 of the given value: ^$12345678 is $34.

\ Extract the bits 24-32 of the given value: \$12345678 is $12.

($) Cast the result to a value type. This also suppresses the warning on „fishy maths”.

(&) Cast the result to an address type. The warning is likewise suppressed.

The casts are executed as the very last operations on the calculation's result, even
after <, >, ^ and \.

Addressing modes:

Operator Function

Force the immediate addressing mode (e.g. LDA #VALUE)

< Force the zero-page addressing mode (e.g. LDA <VALUE)

| Force the absolute (16-bit) addressing mode (e.g. LDA |VALUE)

! Same as the | (e.g. LDA !VALUE).

> Force the long absolute (24-bit) addressing mode (e.g. LDA >VALUE).

These latter ones will be applied first to arguments to mnemonics, then the
assembler will proceed normally with the expression evaluation. So STA !0 (address
0 with forced 16-bit addressing) will produce $8D $00 $00, and STA !!0 will produce
$8D $FF $FF (the first ! forces 16-bit addressing mode, the subsequent one negates
the result of the argument evaluation).

VIII. Binary operators

Basic 32-bit integer arithmetics is what you expect:

Operator Function

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo

The logical shifts (logical, because all the integers are unsigned) may be used as
faster replacements for multiplication and division, where applicable:

Operator Function

<< Logical shift left. E.g. $00001234<<4 will produce $00012340

>> Logical shift right. E.g. $FEDCAB98>>4 will produce $0FEDCAB9

There are slight differences between MAE and ELSA in the syntax of comparison
operators:

MAE ELSA Function

= = Equal

<> Different

> > Greater

< < Lesser

(none) >= Greater or equal

(none) <= Lesser or equal

Attention should be paid to the fact that ELSA evaluates expressions from left to
right. So, to avoid confusing effects in conditionals, it is best to do comparisons so
that the right side of a comparator is a single constant or label. For example:

 .IF FOO=BAR+1

will always(!) be TRUE; to make it work correctly write:

 .IF BAR+1=FOO

Also, comparing to MAE, there are novelties in the logical operators:

MAE ELSA Function

& & binary AND

| | binary OR

^ ^ binary XOR (EOR)

(none) && logical AND

(none) || logical OR

 If you supply addresses as both input numbers for most artithmetical or logical
operations, the program will perform the required maths, but expect a warning in the
process. Subtracting an address from another address, however, as being perfectly
legal, is performed without complaints.

IX. Directives

The directives are keywords which are steering the process of assembling. In
ELSA, as in MAC/65 and MAE, most of these keywords are preceded with a dot. It
makes them more visible in the source code and also facilitates its parsing.

The directives must be located past the column 0 of your source file, i.e. there must
be at least one space (or TAB) between them and the left margin. Only one directive
is allowed per program line, unless stated otherwise.

Symbols used in the table below:
x - expression; w - expression, word value; b - expression, byte value; lb - label

name. All these "expressions" must evaluate in the first assembly pass.

Target CPU control

Directive Synopsis Examples

.6502 Set 6502 as the current target. Implies .RB. The target
CPU is defined as a subset of 65C02, any instruction that
does not belong to that subset will generate a warning.
Alias .02.

 .6502

.65C02 Set 65C02 as the current target. Implies .RB. The target
CPU is defined as a subset of 65SC02, any instruction
that does not belong to that subset will generate a
warning. Alias .c02.

 .65C02

.65C802 Set 65C802 as the current target. The target CPU is
practically the 65C816, just the instructions related to 24-
bit addressing (operational, but pretty much useless on
64k address space) will generate warnings. Alias .802.

 .65C802

.65C816 Set the 65C816 as the current target. This is the default,
unless overridden in the command line or in the source
code. Aliases: .816, .65816.

 .65C816

.65SC02 Set 65SC02 (slightly modified 65C02 produced by
Rockwell and WDC) as the current target. Implies .RB.
The target CPU is defined as a subset of 65C802, any
instruction that does not belong to that subset will
generate a warning. Rockwell's BBR/BBS instructions
and such (which are not continued in 65C802) are not
supported.

 .65SC02

.AB Accumulator Byte: tell the assembler, that the current
accumulator size is Byte. This directive has effect only if
the target CPU is 65C802 or 65C816. For other targets
the assembler will ignore the directive and generate a
warning.

 .AB

.AW Accumulator Word: tell the assembler, that the current
accumulator size is Word. This directive has effect only if
the target CPU is 65C802 or 65C816. For other targets
the assembler will ignore the directive and generate a
warning.

 .AW

.CPU b If the current target is 65C802 or 65C816, tell the
assembler if the current CPU mode selected is the
emulation mode or the native mode. The parameter’s
value of 8 means the emulation mode, and a value of 16
means the native mode. Other values will cause the
assembler to throw an error. .CPU 8 also implies .RB -
and in this mode directives .AW, .IW and .RW will
generate warnings and have no effect. If the current
target CPU is not 65C802 or 65C816, .CPU 16 will
generate a warning.

 .CPU 16

.IB Index registers Byte: tell the assembler, that the current X
and Y register size is Byte. This directive has effect only

 .IB

if the target CPU is 65C802 or 65C816. For other targets
the assembler will ignore the directive and generate a
warning.

.IW Index registers Word: tell the assembler, that the current
X and Y register size is Word. This directive has effect
only if the target CPU is 65C802 or 65C816. For other
targets the assembler will ignore the directive and
generate a warning.

 .IW

.RB Tell the assembler, that the current size of registers AXY
is Byte. This directive has effect only if the target CPU is
65C802 or 65C816. For other targets the assembler will
ignore the directive and generate a warning.

 .RB

.RW Tell the assembler, that the current size of registers AXY
is Word. This directive has effect only if the target CPU
is 65C802 or 65C816. For other targets the assembler
will ignore the directive and generate a warning.

 .RW

Conditionals and general assembly control

Directive Synopsis Examples

.ALIGN w Align the current PC to the boundary specified by the
argument. The argument's value has to be a power of two
and be greater than a 0. A value of 1 is allowed, too, but it
obviously does nothing. In .ZP, .BSS and .ORG blocks
the PC is adjusted by adding offset to its current value. In
.REL and .DATA blocks – by generating a suitable
number of zeros. It is to be kept in mind that .ALIGN
operates on PC value as it is during the assembly time –
in .REL blocks it has no influence how the program will
get aligned in the destination memory.

 .ALIGN $0100

.ELSE This inverts the result of the expression evaluation made
by the .IF directive. Alias .EL.

(see .IF)

.END Ends the assembling and closes the object code file, if
any was opened.

 .END

.ENDIF This ends the conditional block started with .IF. Alias *** (see .IF)

.ERROR Just like .PRINT, but after printing out the required text it
also aborts the assembling with an error message.
Obviously it makes sense within a conditional block only
(.IF / .ENDIF).

 .ERROR "LM=",LM

.IF x The beginning of the conditional block. If "x" is
evaluated as true, the lines immediately following the .IF
directive will be interpreted, or ignored otherwise. The
conditional blocks can be nested up to 256 levels deep.
When this limit is exceeded, the assembler will generate
an error message.

 .IF __M6502__=1
 .PRINT "NMOS"
 .ELSE
 .PRINT "CMOS"
 .ENDIF
 .IF AB&&BC
 ...

.IFDEF lb Returns TRUE if the label "lb" is defined, i.e. already .IFDEF USE_CIO

present in the symbol table. .INCLUDE CIO.S
 .ENDIF

.IFNDEF lb As above, just returns FALSE when the label 'x' is
defined.

 .IFNDEF RTCLOCK
RTCLOCK=18
 .ENDIF

.OPT Specify additional assembly options:
* F- use this when including binary files with .BIN from
a file system which does not provide reliable information
on the length of files (such as AtariDOS file system). F+
is the default.
* H- suppress (or enable with H+) writing headers to the
object code. H+ is the default. This only applies to the
.ABS and .ORG headers, .REL headers are unaffected.
* P+ - enable warnings on cross-page branches. P- is the
default, unless /P was specified in the command line. If it
was, P+ or P- used in the code have no effect.
* W- disable warnings. W+ is the default, however the
command line switch /Q has a priority here and with it
the .OPT W+ will not enable warnings anyway.

 .OPT H-,F-
 .OPT H+,F+

.PRINT Prints the given text during the assembling. ASCII strings
must be included within double quotation marks,
multiple arguments must be separated with commas.
When nothing is given, .PRINT will just output an EOL
character. Alias .PR.

 .PRINT "PC:",*

Repetitions

Directive Synopsis Examples

.ENDR Marks the end of the block started with .REPT. (see .REPT)

.REPT w Marks the beginning of the block of lines in your source
file, which have to be repeated "w" times during
assembling. The end of that block should be marked with
.ENDR. Within the block, the pseudo-label __REPT__
contains the number of the current iteration, and the
operator # when appended to a label, makes it unique for
each iteration. When "w" is zero, the pair REPT/ENDR
will do nothing, and the assembler will generate a
warning. The .REPT blocks cannot be nested.

 LDA MATH
 .REPT 8
 ASL
 ROL MATH+1
 BCS SKIP#
 INC NULS
SKIP#
 .ENDR

Fixed data definition control

Directive Synopsis Examples

.BYTE Inject the given byte values to the output file. The
consecutive "bytes" separated with commas can be:
decimal numbers, hexadecimal numbers preceded with
the $ character, single ASCII characters preceded with
the apostrophe, labels, arithmetic expressions, or text
strings included in the double quotation marks. When the

 .BYTE 0,$FF,'A,"Hey"
 .BYTE <VAL,>VAL
 .BYTE SIZE*2+1
 .BYTE +$80,"HELLO"
 .BYTE -$20,"caps"

first numeric value is preceded with the + or - sign, this
value will be added to or subtracted from, respectively,
the rest of the values generated by this directive. Alias
.BY.

.CBYTE As .BYTE, except that the last byte generated by the
single .CBYTE directive will be "inverted" (i.e. EORed
with $80). Alias .CB.

 .CBYTE "LOAD"
 .CBYTE +$20,"CAPS"

.DBYTE As .WORD, but with the inverted order of the bytes (i.e.
MSB first).

 .DBYTE $07FF,13

.DC w b Define Constant-filled block. The consecutive 16-bit "w"
number of bytes will be filled with the 8-bit value of "b".
A value of 0 for "w" will generate a warning.

 .DC 345 $FF

.FLOAT Store the arguments, separated by commas, in the
Floating Point 6-byte BCD format for use with the OS
ROM's Floating Point package. This directive accepts
two types of arguments: FP constants, which are just
converted to the BCD, and integer expressions, which are
evaluated normally, then the result is converted to the
BCD format. An FP constant must be included in double
quotation marks; when they are missing, this means that
the argument is an integer expression to be evaluated
first. The results coming from the integer evaluator are
interpreted as signed values (range -2147483648 < 0 <
2147483647), so e.g. .FLOAT -2+1 produces correct "-1"
in BCD, and not what the integer evaluator would bring
normally, i.e. 4294967295. Alias .FL.

 .FLOAT "3.14","1E+10"
 .FLOAT 256*3,-2+1

.HEX Generate a series of hexadecimal numbers. It is similar to
.BYTE, but in the particular case of hex number may be
more handy, because does not stipulate them to be
preceded with the $ sign and the separator is space.
Alias .HE.

 .HEX AE 19 00 44 FF

.LONG Stores long, 24-bit words in the object code, in the usual
order of bytes, i.e. LSB first. Alias .LO.

 .LONG $F1234,99999

.QBYTE Store 32-bit words in big-endian order (MSB first). .QBYTE $12345678

.QUAD Store 32-bit words in little-endian order (LSB first).
Alias. .DWORD.

 .QUAD $12345678

.SBYTE Like .BYTE, but understands the given bytes as ASCII
values, and converts them to Atari screen codes before
storing in the object code. Alias .SB.

 .SBYTE "TIME:"
 .SBYTE +$60,"NAME"

.TBYTE Stores 24-bit long words in the memory in the reverse
order of bytes, i.e. MSB first. In other words, it is to
.LONG like .DBYTE to .WORD.

 .TBYTE $ABCDEF

.WORD Stores 16-bit words in the object code, in the usual order
of bytes (LSB first). Alias .WO.

 .WORD $E477,20133

Code generation control

Directive Synopsis Examples

[
...
]

Define a block of code to be used with the conditional
pseudo-instructions Rcc and Scc. If the block contains no
code or data directives, the assembler will generate a
warning.

 LDY #$00
 [
 LDA $2000,Y
 STA $3000,Y
 INY
]
 RNE

.CODE Switch the PC to the code section (or: switch back,
because the code section is the default one). In practice, it
marks an end of the block which was started with .ZP,
.DATA or .BSS. See below the section on Declaring
zero-page locations.

 .ZP
XY .DS 2
 .CODE
 LDA XY

.DATA Switch PC to the DATA section. This code allows you to
declare initialized static variables, which later will be
accumulated in one continuous memory block. See below
the section on Sections DATA and BSS.

 .DATA
FOO .BYTE 1,2,3,4
 .CODE

.INIT w Specify a value for the INITAD vector ($02E2). The
corresponding init segment will be generated
immediately. This keyword in not allowed for .REL
blocks.

 .INIT SETUP

.MC w Move the following code to a different address than the
one specified by the .ORG or .ABS directives. The
difference is that the .ORG/.ABS address will be used as
the program counter to calculate addresses, while the
.MC address will be used to create binary headers of the
absolute type (with the signature of $FFFF or $FFFA). In
the example shown on the right, the code will be
assembled to run at $2000, but the binary loader will load
it at $0600 – the code block must be copied over before
being started. Thus every use of .MC is likely to generate
binary headers (unless they are disabled with .OPT H-).
„Moving” to current address (.MC *) disables the effect
of this keyword. Remark: this keyword is only allowed
inside the CODE section.

 .ORG $2000
 .MC $0600

.ORG w Specifies the address where (a portion of) the object code
has to be stored in the memory. This generates the Atari-
style absolute binary segment (type $FFFF). The
assembler is able to generate up to 1024 separate
segments within one binary file. Related: .ABS
Remarks: when ‘w’ is equal to the current PC value, no
new header will be generated. Alias .OR.

 .ORG $2000

.RUN w Specify a value for the RUNAD vector ($02E0). If "w" is
non-zero, the RUN segment will be generated and
appended at the end of the object file. This keyword in
not allowed for .REL blocks.

 .RUN START

Memory allocation control

Directive Synopsis Examples

.BSS [base] Switch the PC to the BSS section. This keyword allows
you to declare uninitialized static variables anywhere in
your code. The assembler will then accumulate them
automatically in one continuous memory block (which
may be assigned, for example, to a 16k RAM bank or to
a different 64k memory segment). The usage of the
keyword is quite similar to .ZP, with some minor
differences. See below the section on Sections DATA and
BSS.

 .BSS
XY .DS 2
 .CODE

.DS w Declare Storage. In all sections besides DATA, it reserves
the "w" number of bytes as uninitialized data array (as
small as 1 byte – 0 will generate a warning). In other
words, it does not generate code or data, it just adds the
given number to the current PC during assembling, thus
making an empty "gap" in the memory. In DATA sections
it generates the specified number of zeros, being an
equivalent to .DC w 0. See also the remarks on .REL.

 .DS 32

.RS w Define size of an individual variable within a structure.
The space will be of "w" bytes (0 is allowed, it may be
used to create an „union”, i.e. an alias name for a field
already named inside a structure). See below the section
on Defining structures in the memory and on the stack.

 .RS 2

.RSSET w Beginning of a structure. The "w" is the offset of the
structure's first element.

 .RSSET 0

.ZP [b] Switch the PC to the Zero Page section. This keyword
allows to declare zero page variables anywhere in your
source code. See below the section on Declaring zero-
page locations.

Label control

Directive Synopsis Examples

.LOCAL lb Define new local namespace named "lb". This
automatically ends the current local namespace and
switches to the new one. When only terminating the local
namespace and switching to the global one is needed, the
directive should get no parameters. The "lb" label size is
limited to 64 characters.

 .LOCAL INIT0
INIT ...
 .ORG $02E2
 .WORD INIT
 .LOCAL

.SET lb = x Change the value of the label "lb" which was already
defined and has a value assigned. The form with the dot
(backwards incompatible with MAE, but preferred by the
vast majority of the millions of users) is official as of
0.93.

 .SET zpc = $0100

Input/output control

Directive Synopsis Examples

.BIN fn Binary Include. Unlike in MAE, the contents of the file
is not interpreted in any way, it is just verbatim
inserted into the object code. When the file about to be
included is located on a file system which does not
provide reliable information on file's length (such as
AtariDOS/MyDOS file system), use .OPT F- before
calling this directive (and .OPT F+ afterwards). This
causes the file being included to be physically read out
on both passes. Alias .BI.

 .BIN PIC.BMP

.CACHE Tells the assembler to cache (beginning at the next
line) all the source lines in the memory during the first
pass, then use the cached data during the second pass
instead of re-reading all the source files from the disk
(the binary files included with .BIN are not cached).
This may greatly speed the assembly up, if the memory
is much faster than disk storage, but the system has to
have enough RAM available to hold the symbol table
and the cached source code (ELSA itself needs over
230 KB to be assembled this way). As of 0.95 this
keyword will be ignored when there is no high RAM
available and the assembler must contain itself in the
first 64k.

 .CACHE

.INCDIR fn Define a default directory for the .INCLUDE directive.
When the given string does not end with a path
separator, the assembler will append one. When no
argument is given, any previously defined string will
get deleted.

 .INCDIR >FOO>

.INCLUDE fn Includes another source file found at the given
pathname. When no device specification was given, a
„D:” is prepended automatically. A special character $
at its first occurrence within the pathname will get
replaced with the string that has been defined using
.INCDIR. For example, after .INCDIR >FOO>, a
D2:$BAR.S specified as an argument to .INCLUDE
will be expanded into D2:>FOO>BAR.S. And when
nothing was defined, the $ will simply get removed
from the pathname.
These directives can be nested (i.e. the included file
may contain another .INCLUDE directives), just
remember that the stack space is not unlimited. Alias
.IN.

 .INCLUDE MATH.S
 .INCLUDE $BAR.S

.OUT fn Specifies the name of the object code. This directive
will get ignored, if the output file was specified in the
command line. When this file name is not specified
either way, the object code will not be stored
anywhere. Alias .OU.

 .OUT TEST.COM

Listing control

Directive Synopsis Examples

.LC Switch off ("clear") the assembly listing. (see .LS)

.LL List just the following line. .LL
 STA 24*OFFSET+L,X

.LS Switch on ("set") the assembly listing. .LS
 .ORG $0600
START
 JMP $E477
 .END
 .LC

SpartaDOS X support

Directive Synopsis Examples

.ABS w Like .ORG, but enables the assembler to generate
SpartaDOS-style absolute binary headers (signature
$FFFA) instead of Atari-style ones ($FFFF). .ABS
cannot be used, when some data or code was already
generated with .ORG – and vice versa, .ORG cannot be
used after .ABS. Also, .ABS segments (unlike the .ORG
segments) allow to use external label (.XREF) references
within themselves.

 .ABS $2000

.REL b Generate SpartaDOS X relocatable binary block
($FFFE). The „b” parameter is the control byte to be
inserted into the header: when its bit 7 is set to 1, an
„empty” block will be generated, i.e. the instruction for
the SpartaDOS X system loader to allocate up to 65535
bytes of memory for uninitialized variables; and when
the bit 7 is cleared, the „relocatable text segment” will be
generated, i.e. a position-independent block containing
up to 65535 bytes of code and/or data. For the meaning
of lower 7 bits please refer to the SpartaDOS X
programming documentation. The .REL segments
(unlike .ABS segments) allow to use both XREF and
XDEF declarations within themselves. In the .REL
segments with b < $80 (relocatable text segments) the
.DS directive generates zeros, whereas on b>= $80
(memory allocation segments) the .DS directive
generates offset (i.e. empty space).

 .REL $00

.XREF lb Declare a label, named „lb”, as an external symbol. Its
value is unknown at the assembly time, it gets defined
when the program is loaded to the memory. It is assumed
that such a symbol is an address pointing to an object in
global memory: therefore the only form of arithmetics on
those which makes sense is adding or subtracting
constant values (offsets). The result of arithmetics
performed on an extern label may be assigned to a new

 .XREF PRINTF

label, in that case the latter becomes an alias to the
former (inheriting its XREF status and the originally
associated symbol name too). Also see below.

The standard SpartaDOS X loader only allows a program to contain up to 7 .REL-
type blocks. Therefore this is also the maximum number of blocks ELSA allows to
generate for one binary file. This limitation may be lifted in the future, especially in
the extended loader designed for 65C816-based Ataris.

Remark: it is not allowed to use the PC-relative addressing mode (Bxx, BRL,
PEA/PER) to reference a block of code different than the one which contains the
instruction. This is most visible in branch instructions: it is not allowed to do a
branch (even the BRL) from one program block to another one, because at the
assembly time it is not possible to predict where the respective blocks will get loaded
to the memory, and as a consequence, it is also impossible to calculate the relative
offset between them. But, of course, there are no objections to use PC-relative
instructions to reference locations within the same („their”) block of code.

X. Pseudo-labels

Pseudo-labels are keywords with a value, which can be used in arithmetic
expressions just like normal labels. To differentiate a named pseudo-label from other
labels, ELSA marks them by putting two underscore characters (__) before and after
the label's name (examples below).

All label names beginning with double underscore character ("__") are reserved
and should not be used in programs because of possible conflicts with labels
declared by the assembler for internal purposes.

The pseudo-labels usually carry numeric values signalizing currently selected
assembling settings, just as register sizes and such things. Therefore they are
particularly useful in conditional blocks started with .IF.

Label's name Synopsis

* Current value of the Program Counter within the program being compiled. Note
that the assembler maintains more than one Program Counter, e.g. there are
separate Program Counters for the .ZP segment and for the .CODE segment.

__ASIZE__ Current Accumulator size in bytes, as selected by the directives: .AB, .AW, .RB
and .RW.

__BSS__ Current PC value within the BSS section. Note that this is always a value relative
to the BSS base.

__CPU__ Current CPU mode: a value of 8 means the 65C802/65C816 emulation mode, a
value of 16 means the 65C802/65C816 native mode. If the target CPU is anything
below 65C802, the value returned is always 8.

__DATA__ Current PC value within the DATA section. As in BSS, this is always a value
relative to the DATA base.

__DATE__ Current date, day, month, year, stored as a 24-bit word. E.g. 13 February 2020 is
represented as $14020d in the usual little-endian byte order: $0d, $02, $14. If the
computer is not running SpartaDOS X, for this function to work you have to
install a SpartaDOS-compatible "Z:" device in the system.

__ISIZE__ Current size of X and Y register in bytes, as selected by the respective
directives: .IB, .IW, .RB and .RW.

__M6502__ This has value of 1, if the currently selected target CPU is 6502, and 0 otherwise.

__M65C02__ 1, if the currently selected target CPU is 65C02, and 0 otherwise.

__M65SC02__ 1, if the currently selected target CPU is 65SC02, and 0 otherwise.

__M65C802__ 1, if the currently selected target CPU is 65C802, and 0 otherwise. Alias:
__M65802__

__M65C816__ 1, if the currently selected target CPU is 65C816, and 0 otherwise. Alias:
__M65816__

__REPT__ Current iteration within the .REPT/.ENDR block.

__RS__ Current offset of the structure defined by the directives .RSSET and .RS.

__RSSIZE__ Current size of the structure defined by the directives .RSSET and .RS.

__TIME__ Current time of day, stored as a 24-bit word. 24-hour clock is used, so e.g.
19:11:05 will be represented as $050b13, i.e. $13, $0b, $05 in the little endian
byte order. If the computer is not running SpartaDOS X, for this function to work
you have to install a SpartaDOS-compatible "Z:" device in the system.

__ZP__ Current PC within the ZP section, i.e. the zero page defined by the .ZP directive.

XI. Pseudo-instructions

A pseudo-instruction (otherwise known as a macro-instruction) is a kind of a hard-
coded macro: the assembler presents it under a single mnemonic, but during the
assembling this mnemonic is expanded into a series of actual CPU instructions.

The general rules for a pseudo-instruction in ELSA are these:
1) a pseudo-instruction has to follow the syntax of a real instruction, i.e. only the

otherwise existing addressing modes are allowed;
2) a pseudo-instruction must not generate confusing side effects, e.g. so that one

which claims to modify the memory also modifies the accumulator and flags, without
a warning.

ELSA implements these:

Syntax Synopsis Expands to

ADD ... Add without carry. The same addressing modes are
available as for the ADC, this pseudo-instruction is
just 1 byte longer and takes 2 cycles more.
Counterpart: SUB.

 CLC
 ADC ...

ASR Arithmetical Shift Right. As LSR, but the highest
order bit (= sign bit) of the Accumulator is preserved.
Implied addressing only. 3 and 4 cycles for 8-bit
Accumulator, or 4 bytes and 5 cycles for a 16-bit one.

 CMP #$80
 ROR
or:
 CMP #$8000

 ROR

B2H Binary To Hex: convert the lowest nibble of the
accumulator into the corresponding hex digit, and
store the digit in the lowest byte of the Accumulator.
If other nibbles of the Accumulator (8-bit or 16-bit in
respective modes) contain anything but zeros, this
instruction may yield undefined results. 6 bytes, 8
cycles for 8-bit Accumulator, 8 and 10 respectively
for 16-bit Acc.

 CMP #$0A
 SED
 ADC #$30
 CLD
or:
 CMP #$000A
 SED
 ADC #$0030
 CLD

BSL address Branch to Subroutine Long: a position-independent
equivalent of JSR, with the range of a 32k in either
direction. 6 bytes, 10 clock cycles.

 PER ret-1
 BRL address
ret

BSR address As above, just the branch is short: the range is 128 up
or down. 5 bytes, 9 clock cycles (or 10, when the
branch has to cross a page boundary).

 PER ret-1
 BRA address
ret

DEW address
DEW address,X

Decrement Word. The Accumulator gets clobbered in
the process and NZ flags are left inconsistent, so the
assembler will throw warnings because of that. 8 to
11 bytes, zero page min. 11, max. 15 cycles (17 when
index is crossing page boundary), absolute min. 13,
max. 18 (20 when index is crossing page boundary).
When the target CPU is 65C802 or 65C816 and the
currently selected Accumulator and Memory size is
16 bits (M=0), DEW is compiled to a single DEC
instruction (7 cycles for the zp, 8 for the absolute
addressing mode), which leaves the NZ flags both
valid afterwards.

 LDA address...
 BNE skip
 DEC address+1...
skip
 DEC address...
or:
 DEC address...

DWA address
DWA address,X

Decrement Word using Accumulator. Like DEW, but
makes explicit the intermediate use of the
Accumulator (hence no warning on it being
clobbered). Still, the Accumulator is in undefined
state afterwards and so are the NZ flags, which only
reflect the state of the LSB of the word being
decremented. 8 to 11 bytes, zero page min. 11, max.
15 cycles (17 when index is crossing page boundary),
absolute min. 13, max. 18 (20 when index is crossing
page boundary).
When the target CPU is 65C802 or 65C816 and the
currently selected Accumulator and Memory size is
16 bits (M=0), DWA is compiled to the
LDA/DEC/STA series of instructions (10 cycles for
the zp, 12 for the absolute addressing mode), which
leaves the NZ flags both valid afterwards, and the
result of the decrementation in the Accumulator.

 LDA address...
 BNE skip
 DEC address+1...
skip
 DEC address...
or:
 LDA address...
 DEC
 STA address...

Ecc Exit (= return from) subroutine if the condition "cc" is
met. 3 bytes, 8 cycles taken, 3 cycles not taken (or 4,
if the pseudo-instruction components cross a page
boundary). This pseudo-instruction is convenient

 Bcc skip
 RTS
skip

when things are about terminating a subroutine
prematurely, but one should remember that using a
branch to nearest RTS instead of Ecc may produce
better code (i.e. saves one byte, although usually
takes one or two cycles more).

ECC Exit (= return from) subroutine if Carry Clear. BCS skip
 RTS
skip

ECS Exit subroutine if Carry Set. BCC skip
 RTS
skip

EEQ Exit subroutine if EQual. BNE skip
 RTS
skip

EGE Exit subroutine if Greater or Equal. Same as ECS. BCC skip
 RTS
skip

ELT Exit subroutine if Lesser Than. Same as ECC. BCS skip
 RTS
skip

EMI Exit subroutine if MInus. BPL skip
 RTS
skip

ENE Exit subroutine if Not Equal. BEQ skip
 RTS
skip

EPL Exit subroutine if PLus. BMI skip
 RTS
skip

EVC Exit subroutine if V flag clear. BVS skip
 RTS
skip

EVS Exit subroutine if V flag set. BVC skip
 RTS
skip

INW address
INW address,X

INcrement Word. Like an INC address, but
increments a word located at address and address+1.
When the address is on the zero page, occupies 6
bytes and takes 8 to 12 cycles; when outside the zero
page, 8 bytes and 9 to 14 cycles. The N flag is not in a
consistent state afterwards, Z is.
When the target CPU is 65C802 or 65C816 and the
currently selected Accumulator and Memory size is
16 bits (M=0), INW is compiled to a single INC
instruction, and then the NZ flags are both valid
afterwards.

 INC address...
 BNE skip
 INC address...+1
skip
or:
 INC address...

Jcc address Jump if the condition "cc" is met. It is an absolute Bcc skip

version of conditional branches Bcc with identical
meaning, but the jump range of 64k instead of +/-128
bytes. 5 bytes, 5 cycles taken, 3 cycles not taken (or
4, when the instruction components cross a page
boundary).

 JMP address
skip

JCC address Jump if Carry Clear. BCS skip
 JMP address
skip

JCS address Jump if Carry Set. As above, with the opposite
condition.

 BCC skip
 JMP address
skip

JEQ Jump if EQual. BNE skip
 JMP address
skip

JGE Jump if Greater or Equal. Same as JCS. BCC skip
 JMP address
skip

JLT Jump if Lesser Than. Same as JCC. BCS skip
 JMP address
skip

JMI Jump if MInus. BPL skip
 JMP address
skip

JNE Jump if Not Equal. BEQ skip
 JMP address
skip

JPL Jump if PLus. BMI skip
 JMP address
skip

JSL [abs]
JSR [abs]

Jump to Subroutine Long, indirect. Like JSR (abs),
just using a long pointer (located at address abs in
segment 0), therefore requiring RTL to return. Only
available for 65C802 and 65C816 targets. Note that
the pointer abs must be located in segment 0. 7 bytes,
15 cycles.

 PHK
 PEA ret-1
 JML [address]
ret

JSR (abs) Jump to SubRoutine, indirect. Like JMP (abs), just
pushing the return address onto the stack. Only
available for 65C802 and 65C816. Note that the
pointer abs must be located in segment 0. 6 bytes, 11
cycles.

 PEA ret-1
 JMP (address)
ret

JVC Jump if V flag Clear. BVS skip
 JMP address
skip

JVS Jump if V flag Set. BVC skip
 JMP address
skip

PHR Push Registers. Counterpart: PLR. The size and PHA

execution time depends on the target CPU and current
circumstances:
6502: 5 bytes and 13 cycles;
65C02: 3 bytes and 9 cycles
65C802/816: 3 bytes and
* 9 cycles for all registers byte-sized;
* 10 cycles for word-sized accumulator;
* 11 cycles for word-sized index registers;
* 12 cycles for all registers word-sized.
Note that on 6502 there is an unpleasant side effect:
the Accumulator content gets lost - after the PHR's
execution A contains a copy of the Y register. The
assembler will therefore generate a warning in this
case.

 PHX
 PHY
or (for 6502 target):
 PHA
 TXA
 PHA
 TYA
 PHA

PLR Pull Registers. The reverse of the PHR. The size and
execution time depends on the target CPU and current
circumstances:
6502: 5 bytes and 16 cycles;
65C02: 3 bytes and 12 cycles
65C802/816: 3 bytes and
* 12 cycles for all registers byte-sized;
* 13 cycles for word-sized accumulator;
* 14 cycles for word-sized index registers;
* 15 cycles for all registers word-sized.

 PLY
 PLX
 PLA
or (for 6502 target):
 PLA
 TAY
 PLA
 TAX
 PLA

Rcc Repeat previous instructions if condition "cc" is met.
This pseudo-instruction comes in two flavours. In its
simple form it just follows one instruction which is to
be repeated, in this manner:
 LDA VCOUNT
 RNE
In its more complex form, an entire block of
instructions can be repeated. The block should be
defined using the directives [and], in this manner:
 LDY #$00
 [
 LDA $2000,Y
 STA $3000,Y
 INY
]
 RNE
When the branch is in 8-bit signed range, this pseudo-
instruction is compiled as a Bcc, or as a Jcc
otherwise. Therefore the resulting object code may
accordingly vary in code size and execution time.

loop ...
 Bcc loop
or:
loop ...
 Jcc loop

RCC Repeat instructions if Carry Clear. loop ...
 BCC loop
or:
loop ...
 BCS skip
 JMP loop
skip

RCS Repeat instructions if Carry Set. loop ...
 BCS loop
or:
loop ...
 BCC skip
 JMP loop
skip

REQ Repeat instructions if EQual. loop ...
 BEQ loop
or:
loop ...
 BNE skip
 JMP loop
skip

RGE Repeat instructions if Greater or Equal. Same as RCS. loop ...
 BCS loop
or:
loop ...
 BCC skip
 JMP loop
skip

RLA Rotate bits Left in Accumulator. Counterpart: RRA.
Unlike in ROL, the highest bit is copied not only to
the C flag, but also to the bit 0. Timings are identical
as in ASR.

 CMP #$80
 ROL
or:
 CMP #$8000
 ROL

RLT Repeat instructions if Lesser Than. Same as RCC. loop ...
 BCC loop
or:
loop ...
 BCS skip
 JMP loop
skip

RMI Repeat instructions if MInus. loop ...
 BMI loop
or:
loop ...
 BPL skip
 JMP loop
skip

RNE Repeat instructions if Not Equal. loop ...
 BNE loop
or:
loop ...
 BEQ skip
 JMP loop
skip

RPL Repeat instructions if PLus. loop ...
 BPL loop

or:
loop ...
 BMI skip
 JMP loop
skip

RRA Rotate bits Right in Accumulator. Counterpart: RLA.
Unlike in ROR, bit 0 is copied straight into the
highest bit. 5 to 6 bytes, 5 to 7 cycles.

 LSR
 BCC skip
 ORA #$80
skip
or:
 LSR
 BCC skip
 ORA #$8000
skip

RVC Repeat instructions if V flag clear. loop ...
 BVC loop
or:
loop ...
 BVS skip
 JMP loop
skip

RVS Repeat instructions if V flag set. loop ...
 BVS loop
or:
loop ...
 BVC skip
 JMP loop
skip

Scc Skip following instruction if condition "cc" is met.
This pseudo-instruction precedes the instruction
which is to be skipped, in this manner:
 INC ADR
 SNE
 INC ADR+1
In the more complex form the [and] may be used to
define the block to skip:
 LDA $2000
 SEQ
 [
 LDY #$00
 [
 LDA $2000,Y
 STA $3000,Y
 INY
]
 RNE
]
Remark: in the current implementation no global
labels may be defined within the scope of this pseudo-
instruction. For example, the following:

 Bcc skip
 ...
skip

 SNE
RESET JMP $E477
 ...
will cause the assembler to throw an error. Also, the
Scc pseudo-instruction branch range is 127 bytes
only. When the defined block exceeds this range, the
assembler will throw an error.

SCC Skip instruction if Carry Clear. BCC skip
 ...
skip

SCS Skip instruction if Carry Set. BCS skip
 ...
skip

SEQ Skip instruction if EQual. BEQ skip
 ...
skip

SGE Skip instruction if Greater or Equal. Same as SCS. BCS skip
 ...
skip

SLT Skip instruction if Lesser Than. Same as SCC. BCC skip
 ...
skip

SMI Skip instruction if MInus. BMI skip
 ...
skip

SNE Skip instruction if Not Equal. BNE skip
 ...
skip

SPL Skip instruction if PLus. BPL skip
 ...
skip

SVC Skip instruction if V flag Clear. BVC skip
 ...
skip

SVS Skip instruction if V flag Set. BVS skip
 ...
skip

SUB Subtract without carry. The same addressing modes
are available as for the SBC, this pseudo-instruction
is just 1 byte longer and takes 2 cycles more.
Counterpart: ADD.

 SEC
 SBC ...

XII. Instruction aliases

 An alias is just an alternative mnemonic for an instruction. ELSA implements a
handful of these, mostly following the CPU producer's advice.

Syntax Synopsis Equivalent to

BGE address Branch if Greater or Equal. BCS address

BLT address Branch if Lesser Than. BCC address

CLR address
CLR address,X

Clear the specified memory location. STZ address
 STZ address,X

CPA ... Compare with the Accumulator. CMP ...

DEA Decrement Accumulator. DEC

HLT Halt the processor. STP

INA Increment Accumulator. INC

LSL ... Logical Shift Left ASL ...

PEI (address) Push Effective address, Indirect (move word from ZP to stack) PEA (address)

PER address Push Effective address, Relative PEA address

SWA SWap Accumulator halves. XBA

TAD Transfer Accumulator to Direct page register. TCD

TAS Transfer Accumulator to Stack pointer. TCS

TDA Transfer Direct page register to Accumulator. TDC

TSA Transfer Stack pointer to Accumulator. TSC

XIII. Alternative syntax in some instructions

Some instructions have been given alternative syntax as if they had additional
addressing modes, which they obviously do not have; instead, it is just the way ELSA
is allowing the programmer either to omit mandatory argument(s), when the value of
the argument(s) is implied, or to control whether to add the argument or not for
special purposes.

So, first of all, you can omit the arguments for MVN/MVP, if both arguments are
to be zeros:

Basic syntax Alternative syntax

MVN 0,0 MVN

MVP 0,0 MVP

This does not change the code being generated, i.e. the mnemonic MVN without
its arguments specified will generate the same code as MVN 0,0.

Another case are the instructions BRK and WDM. Both are in fact two-byte, but
the basic syntax does not allow to specify the immediate argument. So ELSA allows
this:

Basic syntax Alternative syntax

BRK BRK #$xx

WDM WDM #$xx

This does change the code generated. For example, BRK alone will cause one byte
(of value of $00) to be generated to the object file, but f.e. BRK #$80 will generate
two bytes: $00 $80.

The next case is BIT absolute:

Basic syntax Alternative syntax

BIT abs BIT

The alternative syntax will cause just one byte ($2C) to be generated to the object
code. As the instruction in fact occupies 3 bytes, this may be used to mask out any
following two-byte instruction, effectively skipping it. This effect was traditionally
accomplished by putting .BYTE $2C into the instruction stream, ELSA just makes it
more explicit.

Basic syntax Alternative syntax

BCC label BCC

BCS label BCS

BEQ label BEQ

BNE label BNE

BPL label BPL

BMI label BMI

BVC label BVC

BVS label BVS

The purpose of these is the similar as above, i.e. masking out any following one-
byte instruction. To accomplish that you just need to recognize the current condition,
then use the branch for the exactly opposite condition to use it to skip something. For
example:

CLEAR CLC
 BCS
SET SEC
 ROR FLAG

Calling the location marked with the label CLEAR will clear the C flag, then the
following BCS branch will get ignored together with the SEC instruction which will
get interpreted as its argument - and this effectively makes it skipped.

The BIT zp instruction is traditionally used for this purpose (by inserting .BYTE
$24 into the instruction stream), but using a branch takes one cycle less and, unlike
BIT, does not generate spare memory accesses.

XIV. Divergences from the WDC-recommended syntax

The main divergence from the syntax and mnemonic names, which are
recommended by the WDC, concerns the PEA instruction. The WDC syntax is this:

PEA $xxxx – PEA absolute
PEI ($xx) – PEA direct page indirect
PER $xxxx – PEA relative

But this "PEA absolute" simply pushes its 16-bit argument value onto the stack, so
you could think that naming it (the argument) "absolute effective address", especially
in a machine where effective absolute addresses are 24-bit, is quite an overstatement.
Sure, we write JMP $xxxx, and speak of the instruction as being in absolute
addressing mode, but JMP actually uses its argument as an address to change the
current location of the PC within the code. If we were thinking of JMP as of a 16-bit
move (which it technically is), we could symbolically write it down as MOVE
#$xxxx,PC – and yes, in this context, with the hash.

So, ELSA (and some other assemblers) are treating the first instance of PEA as
being in immediate mode. Therefore the syntax is as follows:

ELSA syntax WDC syntax

PEA #$xxxx PEA $xxxx

PEA ($xx) PEI ($xx)

PEA $xxxx PER $xxxx

As hinted in the previous section, you can still use PEI ($xx) and PER $xxxx
besides PEA ($xx) and PEA $xxxx, respectively.

XV. Declaring zero-page locations

Zero-page variables may be declared the traditional way, i.e. assigning labels fixed
values, like this:

POINTER = $80
TEMP = $82

or, more conveniently, using the .ORG directive to set the PC at a zero-page
address combined with the .DS directive reserving space, like this:

 .ORG $80
POINTER .DS 2
TEMP .DS 1

Both ways, however, are troublesome when writing or maintaining a larger
program which is distributed among several source files (or „modules”); it is best to

have the variables declared in the very module which uses them, but the former way
makes it difficult to track among several files which locations are occupied and which
are not, and the latter one is little improvement: you can easily allocate blocks of
variables, but still there may be conflicts, difficult to track down and solve, between
the blocks declared by different modules of the program.

So, ELSA provides a mechanism which allows to automatically allocate zero-page
variables so that they may be freely declared globally anywhere in the program, and
are sequentially allocated at assembly time so that no conflicts are possible and you
do not need to trouble yourself with assigning actual addresses.

To accomplish this, ELSA provides two keywords:

.ZP – which begins the zero-page declaration block, and

.CODE – which ends the block.

Between these you declare your variables using the .DS directive, for example:

 .ZP $80
POINTER .DS 2
TEMP .DS 1
 .CODE

The number to the right to the .ZP directive is the address of the zero-page
variables to be declared for the entire program. You need to specify this address in the
first .ZP directive, because otherwise the assembler will assume address $00 (this is
the default) and assign your variable to that location – and this is rarely desired on
Atari. But for all following .ZP directives this number should be omitted: the
subsequent .ZP directive will then pickup the zero-page address where the last one
left it and perform the sequential allocation as desired.

Following the example above, the next declaration block may look like this:

 .ZP
CX .DS 1
CY .DS 1
CZ .DS 1
 .CODE

These two blocks declare the following locations: POINTER = $80, TEMP = $82,
CX = $83, CY = $84, CZ = $85. Any third declaration block will then begin
allocation at the address $86 and so on. Of course, as much actual code or data as you
want may intervene between these blocks, so that zero-page variables can easily be
declared not only by the modules they belong to, but they also can be just declated
straight before the actual procedures which use them.

Technicalia: all this works so that the .ZP maintains own program counter. The
numeric parameter next to .ZP sets this counter to a value (which is $00 by default).
Each .DS directive increases the counter, and .CODE switches back to the „main”
program counter, while the .ZP counter remains intact. Any next .ZP directive

(without any additional parameters) will switch to the .ZP counter and use its current
value as the starting point for the allocation. The counter is 32-bit, each time it spans
a 256-byte boundary the assembler generates a warning.

XVI. Sections DATA and BSS

The keywords .DATA and .BSS allow your program to contain separate sections
which will accumulate initialized (.DATA) or uninitialized (.BSS) variables. This way
you will be able to easily split your program into two memory blocks: code on the
other side, and data on the other side. This in turn will allow to prepare programs
which can store its code and data in separate address spaces (such as separate 64k
segments of memory).

Even if your program will run in unified address space (like all 6502 programs do),
the BSS section can still be useful. In small programs (fitting entirely in one source
module) it is usually not necessary to define a separate section for that, but in larger
assemblies it may be advantageous to accumulate uninitialized variables in one
memory block. Particularly all sorts of source code libraries may benefit from that,
because these usually want to declare static variables in their own source files, which
in turn, when they get included, makes the object code more fragmented – and this
increases the size of the program and the necessary loading overhead.

BSS section

The basic usage of the .BSS keyword is generally similar to the .ZP: switch to the
BSS section using .BSS, declare space inside using .DS, switch back using .CODE.
For example:

 .BSS
CX .DS 1
CY .DS 1
CZ .DS 1
 .CODE

As in the ZP section, no code or initialized data are allowed within the BSS
section. One functional difference is that the BSS section is located in the main
memory, so you have to use the absolute (or absolute long) addressing mode to make
references to it. Do not worry: even if a BSS variable is declared at virtual address
lesser than $0100, the assembler will never assume that a zero page addressing mode
should be used in the reference. But otherwise everything works as in ZP sections as
long as your BSS is located in a dedicated 64k segment, forming an address space
truly separate from code's.

However, in programs which are smaller than 64k it is usually inconvenient to
keep the BSS segment in a separate address space. To put the BSS section to the same
address space where your code is living, just specify the BSS base address in the
parameter, for example:

 .BSS $8000

This will make the assembler to allocate your BSS variables from the specified
address onwards. Note: this only defines the BSS base, and (unlike .ZP adr) does not
switch sections. To switch to the BSS section you still have to use .BSS keyword
without the parameter.

If your program has to fit in one 64k segment (as 100% 6502 programs do), it is
usually not very convenient to declare static addresses for sections – it is more
convenient to put the BSS section directly after the main code block, so that, as this
block grows while the program is being developed, the BSS section also get allocated
from higher addresses so that these never overlap. To accomplish that, put the
following directive after the last byte of the defined data or code in your program:

 .BSS *

If you do not add this, all your .BSS variables will get allocated starting at the
virtual address $000000 and you will have to handle this situation on your own (for
example, by allocating a suitable memory block at a 64k boundary and loading the
bits 16-23 of its address to the DBR register).

Note that the .BSS directives do not increase the code’s program counter, so in this
case, after „.BSS *”, the code’s PC will point to the beginning of the BSS section
rather than to the end of it. So if you want to find out, where is the true end of the
memory occupied by your program, you will have to add the value of the pseudolabel
__BSS__ which holds the current BSS offset. In the following example the label
ENDP will hold the address of the first byte past the BSS:

 .BSS *
ENDP = *+__BSS__

BSS PC

For certain technical reason the BSS base can be declared only once in a program:
an attempt at redeclaration will cause the assembler to throw an error. The BSS PC,
however, may be changed at will. It is done with the .ORG directive, there is only one
thing to remember, namely that in this case the .ORG's argument is not an absolute
address, but an offset relative to the BSS base.

Therefore, if you, for example, want your BSS section to occupy two 16k banks of
RAM, do this:

 .BSS $4000 ;define BSS base: the address of bank select RAM
 .BSS ;switch to BSS section
BNK1 .DS 16384 ;assign first 16k
 .ORG $0 ;„reset” the BSS PC back to BSS base
BNK2 .DS 16384 ;assign another 16k
 .CODE ;switch out of the BSS section

The labels BNK1 and BNK2 will both get assigned to the same address: $4000 and
will be pointing to two overlapping areas, 16384 bytes each. It is of course up to the
program to arrange things so that they do not physically overlap, but are properly
assigned to different banks of RAM.

BSS section in .REL blocks

In SpartaDOS X relocatable executables everything seemingly works as depicted
above. But in fact there is no real BSS section in this case: the variables declared
inside .BSS/.CODE scope are created as usual, but the „.BSS *” at the end of a .REL
block will implicitly aggregate them into a separate .REL block allocating memory.

Therefore you may get an impression that there are multiple .BSS sections
possible, but beware: every .BSS * appended at the end of a .REL block is in fact an
equivalent to .REL $80 – and the maximum number of .REL blocks in a program is
currently only 7!

Also, for that same reason – no real BSS – you cannot use the .ORG directive to
change the BSS PC value.

DATA section

The DATA section works similarly to the BSS section, except that it contains
actual data (no code or offsets are allowed). The DATA section accumulates the data
being generated by keywords such as .BYTE, .WORD etc. then stores them all in one
large binary block, which will be appended at the end of the object code. For
example:

 .DATA
CX .BYTE 0
CY .BYTE 0
CZ .BYTE 0
 .CODE

The remarks about addressing are the same as in the case of the BSS section. You
define the DATA section base by putting this at the end of your program:

 .DATA *

And if you want to find out the first byte past the DATA section, do this:

 .DATA *
ENDP = *+__DATA__

Also the .ORG directive, when used within the DATA section, works the same way
as in the BSS section.

DATA section in .REL blocks

In the current implementation it is not possible to use the .DATA keyword inside
a .REL block – this will throw an error.

Combining DATA and BSS sections

When your program contains both DATA and BSS sections, and all this has to fit
within the same address space with the code, you have to define the sections' bases so
that they would not overlap. If you want to keep the most natural order of sections,
i.e. CODE first, then DATA, and BSS at the end, the following appended at the end of
the last code block will do the trick:

 .DATA *
 .BSS *+__DATA__

DATA/BSS quirks

The declaration of the section base at the end of your code will cause the addresses
declared within that section to get assigned different values in the first and the second
assembly pass. This may cause obscure phase errors, for example:

 .ORG $2010
 .DATA
TEXT .BYTE "HELLO!",$9B
 .BSS
TXTADR .DS 2
 .CODE
START .IF TEXT&$00FF
 LDA #<TEXT
 STA TXTADR
 .ELSE
 STZ TXTADR
 .ENDIF
 LDA #>TEXT
 STA TXTADR+1
EXIT RTS
 .DATA *
 .BSS *+__DATA__

The label TEXT will get a value of $000000 in the first pass, and a value of
$002010 in the second pass. Therefore the conditional will in the second pass cause
the code to be 1 instruction shorter than it was in the first pass, so any label declared
after the conditional (here EXIT) will trigger the phase error. The solution in this case
is to .ALIGN the data section to a page boundary, but it is best to avoid using such
tricks while doing references to the DATA and BSS sections, unless they are indeed
going to be physically located in a separate address space each.

XVII. Defining structures in the memory and on the stack

1. The keywords .RSSET and .RS (reserve space) are aimed at defining a data
structure without reserving the actual memory space for it.1 The difference
between .DS and .RS may be illustrated by the following examples:

 .ORG $2000
DOT
?CX .DS 1
?CY .DS 1
?CZ .DS 1
?CC .DS 1
DSZ = *-DOT

After this, four bytes at address $2000 are allocated for the structure named DOT.
The component DOT?CX is to be found at $2000, DOT?CY at $2001, DOT?CZ at
$2002, and DOT?CC at $2003. The program counter value ('*') after this will be
$2004. The variables in the structure, having been assigned to memory locations, are
accessed just as other local labels, e.g.

 LDA DOT?CX

If you need to declare more DOTs, you have to either assign each a name (DOT1,
DOT2, DOT3, ... DOT99 etc. which is absurd) or to declare empty space for the rest
of them:

DOT
?CX .DS 1
?CY .DS 1
?CZ .DS 1
?CC .DS 1
DSZ = *-DOT
 .DS DSZ*99

Now compare with .RS:

COORDS .RSSET 0
?CX .RS 1
?CY .RS 1
?CZ .RS 1
?CC .RS 1
CSZ = __RSSIZE__

First of all, these are not allocated in the memory and the program counter value
('*') does not change during definition. This only defines how a memory location (of
size 'CSZ' bytes) will be internally structured when it will have been eventually
allocated. The allocation is to be done as follows:

DOT .DS CSZ

1 The idea of these keywords and their operation was borrowed from HiSoft's Devpac for Atari ST.

So now we have defined an abstract structure COORDS, which describes three-
dimensional coordinates and color of an object, then declared a memory object
named DOT which uses this structure to hold its individual coordinates and color.
References to this structure can be made as follows:

 LDA DOT+COORDS?CX

This may at first appear more troublesome than the method which uses .DS, but is
in fact very handy when the program has to manage not even multiple objects sharing
the same internal structure, but rather multiple groups of these, yet not necessarily
being allocated consecutively in the memory:

TWODOTS .DS CSZ*2
TEMP .DS 4
SAVEDOT .DS CSZ
STACK .DS 128
HUNDREDDOTS .DS CSZ*100

Any change of the internal organization and size of all these memory objects only
requires redefining the structure COORDS without redefining all the individual
objects or groups of objects which share this structure. The mechanism described is
similar to what C language does when the programmer is declaring a structure using
'typedef struct' then assigning memory to it using 'struct' – ELSA itself uses this
technique internally to maintain e. g. multiple program counters.

Remark: note that the label COORDS used in the examples above will actually be
assigned an address equal to the value of the program counter ('*') at the time of
.RSSET execution. So (quite differently than in the first example with .DS, where
you can reference DOT instead of DOT?CX and get the same result), you cannot use
COORDS alone here as an equivalent to COORDS?CX, because the former is an
absolute address, while the latter is an offset. So LDA DOT+COORDS will just add
the address of your memory object to a random address which was in the PC while
the structure COORDS was being defined, which would be very wrong and would
lead your program astray. There is however a good reason why the assembler allows
that and does not even generate a warning. This reason will hopefully become clear
in the following section.

Besides, using such a construction as DOT+COORDS (without specifying at
which one of the internal variables of the structure we are aiming) would defeat the
whole purpose of using the structure (which is to be able to freely alter the internal
organization of multiple memory objects without reediting all of them and all of the
existing code which is referencing them).

2. Another purpose of the .RSSET and .RS directives is to declare offsets for local
variables allocated on the stack. It is actually very convenient to use stack to store
variables which are in use only within the scope of a single subroutine instead of
allocating static memory locations for them: the ZP storage is too short to waste it for
that purpose, and, besides, static variables make the code not reentrant (which may be
crucial in interrupt handlers, for example). Also there are programs which simply do

not have free static space at their disposal or it is very limited (such as device drivers
running under an operating system), and if they do find some, there is always a risk
of an obscure conflict with another OS component or even an application program.

In all these cases allocating some stack space, which will vanish after use, comes
in quite handy. For example:

MUL_A_BY_3
 PHA
 ASL
 ADC $01,S
 PLX
 RTS

It is all very easy when there is just one variable on the stack, but a slightly larger
number of them may already become a trouble: when it is necessary to reedit the code
and add or remove a variable, all offsets must be recalculated from scratch, and it is
too easy to lose track what is where. And this is where RSSET/RS come in handy, for
instance:

MUL_A_BY_14
 .RSSET 1
?M4 .RS 1 ;this one will be on the top of the stack
?M2 .RS 1
 ASL
 PHA
 ASL
 PHA
 ASL
 ADC ?M2,S
 ADC ?M4,S
 PLX
 PLX
 RTS

Note that both examples would be of the same size if using zero-page variables
instead of the stack, so it is not the code size which we are gaining here: it is the use
of static memory locations which is avoided this way.

The latter example also provides explanation on why the assembler allows the
label declared straight before the .RSSET to retain its original value – in this case it
is simply necessary (as the label is assigned a valid address of a subroutine) and for
the assembler there is no way to tell the difference between this situation and the one
described in chapter XVII.1 above.

Also note that the .ZP directive may be used for the same purpose, i.e. allocating
variables, which are visible in the scope of a specific subroutine (in other words,
variables local to that subroutine). This is wasteful, but in small programs, especially
those which have to run on vanilla 6502, may be very convenient:

MUL_A_BY_14

 .ZP
?M4 .DS 1
?M2 .DS 1
 .CODE
 ASL
 STA ?M2
 ASL
 STA ?M4
 ASL
 ADC ?M2
 ADC ?M4
 RTS

XVIII. XREFs and XDEFs

XREFs

As of version 0.94 ELSA supports external symbols for use with SpartaDOS X
relocatable binaries. There are two types of external symbols: a) the symbols which
have been defined externally in global memory by the system, your program may
want to import these (XREFs); b) the symbols your program wants to export to the
global memory for the system or other programs to use (XDEFs).

XREFs are declared using the keyword .XREF. The argument to this keyword is
the label of an external symbol which is predefined and by the system otherwise
known (see SpartaDOS X programming documentation), for example:

 .XREF COMTAB

will declare label ‘COMTAB’ so that your program may reference it without
further definition. When your program gets assembled, that label will cause the
assembler to generate an XREF record and append it to the resulting binary file. At
loading time, the SpartaDOS X relocating loader will take that into account and, if
the symbol exists, will resolve it to an address. XREFs are allowed in .ABS, .REL
and .DATA segment types. An XREF record will contain a symbol name converted to
upper-case and cut down to 8 characters, when it is longer than that, or space-
padded to 8 characters otherwise.

As for that particular example, COMTAB is the SpartaDOS internal structure
containing many fields located at offsets negative and positive from the point the
symbol points to. Using references such as COMTAB-4 or COMTAB+255 may be
inconvenient, therefore you can assign them labels, for example:

 .XREF COMTAB

divend = COMTAB-6
decout = COMTAB-19
decout2 = COMTAB-21

The references to these „secondary” labels, when used in your program, will cause

the assembler to generate XREF records for the originating symbol. An XREF-type
label is declared as type value (not address!), and it is to be kept in mind that the
result of any arithmetics, where one of the components is XREF, will also be XREF. It
is also not allowed to have two or more XREFs in one equation – it would not make
sense as the exact value of an XREF is unknown during assembling.

Notice: an XREF label gets a value of 0 by default (the actual address being filled
in at loading time, as explained above). ELSA’s integer evaluator performs 32-bit
computations, thus any calculation sets all the 32 bits of the result. Accordingly,
COMTAB-1 = 0-1 = -1, and -1 is $FFFFFFFF in 32-bit integer representation. Thus
e.g. LDX COMTAB-1, intended as being in absolute addressing mode, could easily
be „cast” to the long absolute addressing mode, which in turn does not exist for LDX!
To prevent such unpleasant surprises, the result of an arithmetic expression which
contains an XREF is (as of 0.95) cut down to 16 bits. Please keep in mind that this
does not prevent XREFs from referencing locations anywhere in the 24-bit address
space: this just prevents these references from spanning 64k boundaries (as e.g.
$000000-1 will wrap back to $00FFFF – but the relocating loader is still able to fill
all three bytes of a longword, when applicable).

XDEFs

XDEFs, on the other hand, do not require separate directives, a label is declared as
a symbol to be exported using the declarator ‘%’; for example, this declaration:

@grep%

will cause the assembler to generate an XDEF record defining the symbol @GREP.
At loading time the SpartaDOS X relocating loader will append that symbol to the
global list, and remove it, when your program terminates (unless your program is a
TSR). XDEFs are allowed in .REL segment type only. Unlike XREF, the XDEF status
is not preserved in assignments; in other words, if your assign the @grep label’s
value as defined above to some other label, the latter will not become an XDEF.

XIX. Starting relocatable programs

SpartaDOS programs are by default started at the beginning of the block which
was consecutively the first one to be loaded to the memory; and, as it was said above,
the use of .RUN, .INIT or .ORG directives is not allowed in what is to become a
relocatable binary. Nevertheless a relocatable program can be started from another
point than its very beginning, and it can be done without additional support code.

It is just enough to know that the RUNAD vector ($02E0) is still operational and
will be used by the loader, when set; and that pointers located within an .ABS block
will get fixed up during loading. Therefore, assuming that START is a label pointing
to a location in a relocatable block, write:

 .ABS $02E0

 .WORD START

The program will then be started from that label rather than from the beginning.

Appendix A: SpartaDOS X system loader relocation rules

Normally, the SpartaDOS X system loader performs fixing up the 16-bit words,
which the fixup records or XREF records, appended to the binary file, identify as 16-
bit addresses (within 64k address space) to be fixed during loading. Loading blocks
of code to 130XE-type or Axlon-type banked memory does not make any difference,
because all that physically fits in the 64k address space.

Extending that scheme to the 24-bit address space requires introducing additional
rules which allow the SpartaDOS X system loader to decide on the fly if the memory
location to be fixed up is a 16-bit word or a 24-bit long word.

To explain that we have first to define two terms:
a) base block: it is the program’s block which provides the base address for

relocation. For example, if I have loaded some code at $002000 and want to reference
it from another block (loaded somewhere else), $002000 will be the base address for
my relocations: the relocating loader will add that address to any absolute reference
(e.g. a JSR) I am making to that block.

b) target block: it is the program’s block inside which the relocating loader will be
fixing up the addresses. These locations may contain absolute references (e.g. a JSR)
to the same block (internal references) as well as to other blocks (external
references).

Now, as said already, the default size of all relocations is 16-bit: if I want a JSR
from the „target” block to an address in the „base” block, the assembler will generate
a JSR instruction with the argument relative to the beginning of the block the JSR is
aiming at (= the base block); and the relocating loader, while the program is being
loaded, will fix that word up by adding the base block load address to the argument of
the JSR.

For the 6502’s 64k address space, this is always the case. For the 65C816 24-bit
address space the following additional rules apply:

a) if the base block is not the same as the target block, and
b) if the base block is loaded outside the first 64k (segment 0), then
c) the relocation size is 24-bit.
In pseudocode:

fixups = word
if base_block <> target_block
 b1 = base_block_address & $ff0000
 if b1 <> 0
 fixups = long
 endif
endif

This means that:

a) internal references of any block, whenever it is loaded, will be resolved as 16-bit
words; this makes internal long word references possible only for blocks loaded to
the first 64k (segment 0);

b) external references to any block loaded to the segment 0 may be both 16-bit and
24-bit; in 24-bit long words the most significant byte will be unchanged by the
relocating loader;

c) external references to any block loaded outside the segment 0 must be 24-bit.

Appendix B: MAE's directives not supported in ELSA

Directive Synopsis

.24 In MAE this enables 24-bit address calculations (16-bit otherwise). In ELSA all
expressions are evaluated as 32-bit values, so this directive has no purpose. It
causes no error, however.

.EN This is only supported as an alias for .END, and not as an alias for .ENDIF.

.MD, .ME, .MG These are: Macro Definition, Macro End and Macro Global. They are not
supported at the moment because ELSA does not support macros (yet).

Appendix C: MAE's bugs

There are several known bugs in MAE's compiler, here is how ELSA will behave
in the same circumstances:

Code Problem MAE's behaviour ELSA's behaviour

SOMELONGLABEL012 = 1 Label longer than 15
characters.

Likely crash. Labels up to 240
characters are
allowed.

LDA ($1234),Y No such addressing
mode.

Silently accepted as
LDA ($34),Y

Accepted with a
warning as LDA
($34),Y

LDX $800000 No such addressing
mode.

Silently accepted as
LDX $00

Error, improper
addressing mode.

LDA #$<1234 Nonsense syntax. Silently accepted as
LDA #$01

Error, bad constant.

AA = BB
BB = CC
CC = 1
 .ORG $0600
 LDA AA

AA undefined during
second pass.

LDA AA silently
accepted as if it was
LDA 32768

Error, undefined
label.

.LONG 0*2 None apparent. Compiled as .LONG
$2A0000

Compiled as .LONG
$000000

.WORD -256 None apparent. Compiled as .WORD
$FE00 (= -512)

Compiled as .WORD
$FF00

Appendix D: ELSA's source statistics

* Labels defined: ca 2100 (ca 48 KB)
* Source code lines: ca 15100
* Source code size: ca 185 KB
* Number of source files: 32
* Shortest source file: 71 bytes
* Longest source file: 24 KB

Time spent self-assembling

Rapidus 20 MHz, Fast RD/WR, spinning platter HDD 26 sec.

Rapidus 20 MHz, ditto, Rapidus banked SDRAM RAM-disk 22 sec.

Antonia 1.77 MHz, case-sensitive mode 330 sec. (5 min. 30 s.)

Time spent creating 6000 labels, 11 characters each

Rapidus 20 MHz, Fast RD/WR, case-sensitive mode (default) 87 sec. (1 min. 27 s.)

Rapidus 20 MHz, ditto, case-insensitive mode 93 sec. (1 min. 33 s.)

Altirra 21.28 MHz, case-sensitive mode 82 sec. (1 min. 22 s.)

Altirra 21.28 MHz, case-insensitive mode 88 sec. (1 min. 28 s.)

Antonia 1.77 MHz, case-sensitive mode 1089 sec. (18 min. 9 s.)

The code to test the 6000 labels:

 .CACHE
 .REPT 6000
#
 .ENDR

Time spent generating 32768 times LDA #$FF

Rapidus 20 MHz, Fast RD/WR 9.60 sec.

Altirra 21.28 MHz 8.68 sec.

Antonia 1.77 MHz 101 sec. (1 min. 41 sec.)

The code:

 .CACHE
 .REPT 32768
 LDA #$FF
 .ENDR

Time spent creating a 512k file filled with $FFs

ELSA, Rapidus 20 MHz, Fast RD/WR, SpartaDOS X 4.49f, GR.0 72 sec. (1 min. 12 s.)

ELSA, Rapidus 20 MHz, Fast RD/WR, SpartaDOS X 4.49f, VBXE 69 sec. (1 min. 9 s.)

Time spent creating a 512k file filled with $FFs

ELSA, Rapidus 40 MHz, Fast RD/WR, SpartaDOS X 4.49f, VBXE 47.04 sec.

MADS 2.1.3, Pentium III 1200 MHz, FreeBSD 8 30.89 sec.

The code for ELSA:

 .CACHE
 .OUT EMPTY.ROM
 .OPT H-
 .REPT 32768
 .HEX FF FF FF FF FF FF FF FF
 .ENDR
 .REPT 32768
 .HEX FF FF FF FF FF FF FF FF
 .ENDR

The roughly equivalent code for MADS:

 .OPT H-
 .REPT 32768
 .BYTE $FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF
 .ENDR
 .REPT 32768
 .BYTE $FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF
 .ENDR

